Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinreiche Beleuchtung

25.08.2015

Sie sind bis zu 80 Prozent energieeffizienter als Glühbirnen und halten ca. fünf Mal so lang wie Energiesparlampen: LEDs werden immer häufiger zur Beleuchtung eingesetzt. Noch besteht aber Optimierungsbedarf bei weißen LEDs, denn bisherige Herstellungsverfahren kosten entweder sehr viel oder drücken die Lebensdauer der LEDs.

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt eine neue Methode entwickelt und sind dabei ungewöhnliche Wege gegangen: Ihre LEDs bestehen zum Teil aus fluoreszierenden Proteinen.


Das Bild zeigt die gelartigen Netzwerke, die aus einer konzentrierten wässrigen Protein-Lösung sowie einer Polymermischung bestehen. (Bild: Michael Weber)

Ob als Raum- oder Straßenbeleuchtung, in Ampeln oder in Bildschirmen: LEDs sind aus unserem Alltag nicht mehr wegzudenken. Eine lange Lebensdauer, hohe Energieeffizienz, Umweltfreundlichkeit sowie der geringe Wartungsaufwand sind dabei nur einige Vorteile dieser Technologie. Die Herstellung weißer Leuchtdioden ist jedoch kompliziert.

Die Mischung macht´s

Um zukunftsweisend Weißlicht zu erzeugen, gibt es zwei Verfahren, die beide Nachteile haben: Bei der ersten Methode werden dünne Schichten aus anorganischen Materialien wie Phosphor oder Seltenen Erden auf eine blaue LED aufgetragen. Diese verfügen über eine lange Lebensdauer und emittieren Licht in optimaler Stärke.

Durch die Seltenen Erden und das aufwändige Herstellungsverfahren sind die Fabrikationskosten extrem hoch und nicht nachhaltig. Alternativ werden Organische LEDs eingesetzt, bei denen mehrere organische Halbleiterschichten einem Sandwich gleich zwischen zwei Elektroden aufgebracht werden.

Diese erreichen jedoch eine geringere Leistung sowie Lebensdauer als ihre anorganischen Pendants. Optimal wäre daher ein Mix dieser beiden Varianten, die die Vorteile beider Methoden vereint.

Genau solch ein Mix ist FAU-Wissenschaftlern nun gelungen – mit Hilfe von fluoreszierenden Proteinen, die in einem gummiartigen Material eingebettet auf eine LED aufgebracht werden. Um die neuartigen LEDs herzustellen, haben sich Dr. Rubén D. Costa vom Exzellenzcluster „Engineering of Advanced Materials“ der FAU und sein Kollege Prof. Dr. Uwe Sonnewald vom Emerging Field Projekt „Synthetic Biology“ der FAU zusammengeschlossen.

Proteine im Gel-Bett

„Die fluoreszierenden Proteine vereinen die gewünschten Eigenschaften“, erklärt Dr. Rubén D. Costa vom Lehrstuhl für Physikalische Chemie I. „Sie sind umweltfreundlich und kostengünstig in der Herstellung. Zudem lässt sich durch die Proteine leicht die Farbeinstellung – ob farbig oder weiß – steuern.“

Einen Haken gibt es jedoch: Die Proteine sind nur in einer wässrigen Pufferlösung stabil, so dass Standard-Beschichtungsverfahren nicht angewendet werden können. Zudem mussten die Wissenschaftler sicherstellen, dass die Proteine unter unterschiedlichsten Umweltbedingungen, wie beispielsweise hohe Temperaturen oder Feuchtigkeit, stabil arbeiten.

Ihre Lösung: Die FAU-Forscher entwickelten eine neue Technik zur Beschichtung. Sie betteten die Proteine in ein Gel ein, das aus einer konzentrierten wässrigen Protein-Lösung sowie einer Polymermischung besteht. Die Polymerstoffe verbinden dabei die wässrige Protein-Lösung zu einem gelartigen Netzwerk und sorgen dafür, dass die benötigte Feuchtigkeit gespeichert bleibt.

Durch Vakuumtrocknung verwandelt sich das Gel in ein gummiartiges Material, das sich für die mehrlagige Beschichtung der LEDs eignet – und die Proteine vor äußeren Einflüssen schützt.

„Mit unserer Methode haben wir es geschafft, langlebige und effiziente weiße LEDs umweltfreundlich und kostengünstig herzustellen. Das ist für zukünftige Generationen von LEDs wegweisend“, freut sich Costa.

Wissenschaftliche Exzellenz

Am Exzellenzcluster „Engineering of Advanced Materials“ der FAU erforschen und entwickeln 200 Wissenschaftler neuartige Materialien. In über 90 Projekten arbeiten die Forscher aus neun Disziplinen (Angewandte Mathematik, Chemie- und Bioingenieurwesen, Chemie, Elektrotechnik, Informatik, Medizin, Maschinenbau, Physik und Werkstoffwissenschaften) entlang der Prozesskette vom Molekül bis zum Material zusammen.

Die Emerging Fields Initiative hat die FAU im Jahr 2010 ins Leben gerufen, um neuartige und möglichst interdisziplinär angelegte Forschungsprojekte mit hohem Entwicklungs- und Erfolgspotential frühzeitig zu erkennen, unbürokratisch zu fördern und zur Drittmittelfähigkeit zu verhelfen. Aus den ersten beiden Ausschreibungsrunden sind 18 EFI-Projekte hervorgegangen, die mit insgesamt rund 12 Millionen Euro gefördert werden.

Ihre Ergebnisse haben die Wissenschaftler in der Zeitschrift Advanced Materials veröffentlicht: http://dx.doi.org/10.1002/adma.201502349

Weitere Informationen für die Medien:
Prof. Dr. Uwe Sonnewald
Tel.: 09131/85-28255
uwe.sonnewald@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften