Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine in Darmbakterien erkennen die Zellenform

06.09.2012
Protein-Wellen erzeugen geometrische Figuren in künstlicher Membranumgebung und sorgen für Ordnung
Wissenschaftler aus Dresden, Boston und Saarbrücken haben in einer gemeinsamen Studie herausgefunden, wie spezielle Proteine des Darmbakteriums Escherichia Coli die Form der Zelle erkennen können. Diese Arbeit kann helfen, den Zellteilungsmechanismus in Escherichia Coli besser zu verstehen.

In Escherichia coli wird die Zellteilung wesentlich von den sogenannten FtsZ-Proteinen durchgeführt. Bevor es zur Teilung kommt, sammeln sich diese in der Zellmitte und bilden den Z-Ring, der die Mutterzelle in zwei Hälften teilt und die beiden zukünftigen Tochterzellen abschnürt. Aber woher wissen diese speziellen Strukturproteine, dass sie sich während Zellteilung in der Mitte ansiedeln sollen?

In dem Escherichia coli oszillieren Min-Proteine zwischen den beiden Enden des stäbchenförmigen Bakteriums. Auf künstlichen Membranen in Goldmikrostrukturen folgen sie der Ausrichtung.

© Jakob Schweizer, Biotechnologisches Zentrum der TUD

Ihre Lokalisierung wird durch eine weitere Familie von Proteinen reguliert, durch die sogenannten Min-Proteine. Diese oszillieren zwischen den beiden Enden des stäbchenförmigen Bakteriums hin und her und konzentrieren sich dabei an den beiden Polkappen der Zelle, wohingegen die Zellmitte weitestgehend frei bleibt. Da die Min-Proteine FtsZ-Proteine blockieren, kann sich der Z-Ring nur in der Mitte der Mutterzelle ausbilden.

Um das räumliche und zeitliche Verhalten der Min-Proteine genauer zu studieren, haben Wissenschaftler des Biotechnologischen Zentrum der Technischen Universität Dresden (BIOTEC) der Arbeitsgruppe von Professorin Petra Schwille eine künstliche Membranumgebung geschaffen, mit der die Proteine wechselwirken können. Unter Zugabe von Energie in Form von Adenosintriphosphat (ATP), dem Energieträger aller biologischen Zellen, bildeten die Min-Proteine ebene Wellen aus, die sich über den künstlichen Membranteppich ausbreiten. In einer Kooperation mit dem Institut für Integrative Nanowissenschaften des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden wurde das Ausbreitungsverhalten der Min-Protein-Wellen eingehender studiert, indem die künstlichen Membranen durch Gold-Mikrostrukturen in spezifische geometrische Formen gebracht wurden.

„Bei unseren Messungen mit Min-Proteinen auf geometrisch geformten Membranen konnten wir beobachten, dass sich die ausbreitenden Wellen an der vorgegebenen Struktur ausrichten und offenbar somit die Geometrie quasi spüren können“, erläutert Jakob Schweizer, der mit diesem Thema im Fachbereich Physik an der TU Dresden promoviert. “So haben wir zum Beispiel beobachtet, dass in rechteckigen Membranstrukturen die Wellen immer entlang der Diagonalen verlaufen, und in gekrümmten Formen können wir die Wellen sogar um die Ecke lenken.“ Die Arbeit, die diese Woche im Journal Proceedings of the National Academy of Sciences USA veröffentlicht wurde, ist die erfolgreiche Fortführung des Projekts von Dr. Martin Loose, Dr. Walter Seipp-Preisträger der TU Dresden 2011, der gegenwärtig an der Harvard Medical School forscht.

Bei den Min-Protein-Wellen handelt es sich wie bei vielen chemischen Wellen um ein Reaktions-Diffusions-System. Deren theoretische Erforschung hat in Dresden lange Tradition. Co-Autor Prof. Karsten Kruse von der Universität Saarbrücken hat sich bereits am Max-Planck-Institut für Physik Komplexer Systeme mit solchen Phänomenen beschäftigt. Die von seiner Arbeitsgruppe durchgeführten numerischen Simulationen der Min-Protein-Wellen in den geometrischen Membranstrukturen konnten nicht nur die experimentellen Arbeiten der Dresdner Wissenschaftler korrekt vorhersagen, sondern damit auch theoretische Modelle aus der früheren Studie bestätigen.

Weil die Messungen nicht in der biologischen Zelle, sondern in einer künstlichen Membranumgebung durchgeführt wurden, ist diese Arbeit dem Bereich Synthetische Biologie zuzuordnen, der in den letzten Jahren immer mehr Bedeutung für die biologische Grundlagenforschung erlangt hat. „Diese Studie zeigt, dass die Ansätze der synthetischen Biologie viel versprechend sind“, sagt Professorin Petra Schwille. “Es ist in der Tat möglich, zelluläre Prozesse im Reagenzglas nachzubilden und dabei auch noch grundlegende Phänomene zu entdecken, die uns bei der Beobachtung sehr viel komplexerer biologischer Zellen verschlossen bleiben.“ Petra Schwille, bisher Professorin am BIOTEC, ist seit Mai Direktorin am Max-Planck-Institut für Biochemie in Martinsried. Mit ihren Mitarbeitern setzt sie dort die Erforschung der Min-Proteine und der synthetischen Biologie fort.
Die Studie ist zu finden: www.pnas.org/cgi/doi/10.1073/pnas.1206953109

Pressekontakt
Birte Urban-Eicheler, Pressesprecherin Biotechnologisches Zentrum der TU Dresden (BIOTEC), Tel. 0351 458-82065, E-Mail: birte.urban@crt-dresden.de

Prof. Petra Schwille, Department of Cellular and Molecular Biophysics
Max-Planck-Institut für Biochemie, D-82152 Martinsried
Tel.: 089/8578 2901, E-Mail: schwille@biochem.mpg.de

Prof. Karsten Kruse, Theoretische Physik, Universität des Saarlandes
Tel.: 0681 / 302-2763, E-Mail: k.kruse@physik.uni-saarland.de
139Proteine

Das BIOTEChnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt „Molecular Bioengineering und Regenerative Medizin“ ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik