Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein in Spinnengestalt

26.04.2013
Das Immun-Eiweiß C4BP eignet sich möglicherweies als Wirkstoff-Transporter

Das Protein C4BP ähnelt in seiner räumlichen Gestalt mit acht „Armen“ einer Spinne. Die Struktur des „Spinnenkörpers“ haben Forscher vom Braunschweiger Helmholtz-Zentrum für Infektionsforschung (HZI) und der TU Darmstadt jetzt im Detail aufgeklärt. Diese bringt die Wissenschaftler auf ungewöhnliche Ideen: Das Protein eignet sich möglicherweise als Grundgerüst für den Wirkstofftransport. Ihre Ergebnisse veröffentlichen die Forscher in der aktuellen Ausgabe der internationalen Fachzeitschrift Journal of Molecular Biology.


Schematische Darstellung des "Spinnen-Proteins" C4BP. © HZI / Schmelz

Das sogenannte Komplementsystem ist Teil der angeborenen Immunabwehr im menschlichen Körper: Über sechzig verschiedene Proteine bilden eine der ersten Gegenmaßnahmen gegen eingedrungene Krankheitserreger. Eines davon ist das C4b-bindende Protein, kurz C4BP. Im Blut ist es an der Immunabwehr gegen Bakterien beteiligt. Wie genau ein solcher Eiweißstoff seine Funktion ausübt oder wie er mit anderen Molekülen in Wechselwirkung tritt, das können die Wissenschaftler nur dann genau vorhersagen, wenn sie die räumliche Struktur des Moleküls kennen. Strukturbiologen untersuchen daher die Substanz in reinster Form mit Röntgengeräten und können dann am Computer den räumlichen Bauplan rekonstruieren. Im Fall des jetzt beschriebenen C4BP fanden sie heraus: Es hat acht „Arme“ und ähnelt damit gewissermaßen einer Spinne. Sieben der „Arme“ sind als „Alpha-Ketten“ identisch, der achte, eine „Beta-Kette“ unterscheidet sich von den übrigen. Der „Spinnenkörper“, der diese Seitenketten zusammenhält, wird Oligomerisierungsdomäne genannt. Dessen Aufbau war für die Forscher von besonderem Interesse, denn er gibt die räumliche Anordnung der „Arme“ vor.

Die jetzt beschriebene Struktur lässt dafür zwei mögliche Varianten zu. „Von diesen beiden Möglichkeiten ist eine aber wahrscheinlicher, weil sie viel stabiler ist“, sagt Thomas Hofmeyer, Doktorand am Institut für Organische Chemie und Biochemie der TU Darmstadt und Erstautor der Publikation. Und stabil ist das C4BP durchaus, wie der zweite Erstautor Dr. Stefan Schmelz aus der Abteilung Molekulare Strukturbiologie des HZI ergänzt: „Es lässt sich nicht einmal durch Kochen aus der Form bringen.“ Normalerweise sind menschliche Proteine etwa bis 40°C stabil. Höhere Temperaturen herrschen zwar im Körper nicht, doch die Haltbarkeit von C4BP hat einen ganz anderen Nutzen: „Wie alle Bestandteile des Komplementsystems kommt auch das C4b-bindende Protein im Blutplasma vor. Im Blutstrom sind die Proteine enormen Scherkräften ausgesetzt“, erklärt Dr. Andrea Scrima, Leiter der Nachwuchsgruppe „Strukturbiologie der Autophagie“ am HZI. Diesen Kräften muss das Protein standhalten können.

Die räumliche Struktur wollen die Forscher sich jetzt zunutze machen. Ihre Kenntnis ermöglicht die biochemische Synthese des Moleküls. Beim Nachbau im Reagenzglas können die Forscher gezielt Veränderungen vornehmen: „Statt der sieben Alpha-Ketten könnten wir andere Biomoleküle einbauen“, so Prof. Harald Kolmar, Leiter der Arbeitsgruppe Angewandte Biochemie am Institut für Organische Chemie und Biochemie an der Technischen Universität Darmstadt. „Wir können die Oligomerisierungsdomäne wie ein Gerüst nutzen, um es mit Wirkstoffmolekülen zu dekorieren.“ Diese könnten zum Beispiel Impfstoffe sein. Sieben auf einen Streich, durch die siebenfache Bindungsmöglichkeit. So gebündelt gelangt mehr Wirkstoff an sein Ziel. Die Dosis könnte reduziert werden und das Immunsystem würde trotzdem stärker stimuliert. „Möglicherweise könnten dadurch Versorgungs-Engpässe bei Impfstoffen in Zukunft vermieden und Nebenwirkungen reduziert werden“, sagt Kolmar.

Originalpublikation:
Thomas Hofmeyer*, Stefan Schmelz*, Matteo T. Degiacomi, Matteo Dal Peraro, Matin Daneschdar, Andrea Scrima, Joop van den Heuvel, Dirk W. Heinz, Harald Kolmar, * geteilte Erstautorenschaft
Arranged Sevenfold: Structural Insights into the C-Terminal Oligomerization Domain of Human C4b-Binding Protein
Journal of Molecular Biology, 2013, DOI: 10.1016/j.jmb.2012.12.017

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Die Technische Universität Darmstadt:
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Ihre rund 300 Professorinnen und Professoren, 4.500 wissenschaftliche und administrativ-technische Mitarbeiterinnen und Mitarbeiter, Auszubildende und wissenschaftliche Hilfskräfte sowie 25.000 Studierende widmen sich entscheidenden Zukunftsfeldern wie Energie, Mobilität, Kommunikation und Information sowie Bauen und Wohnen.

http://www.tu-darmstadt.de

Gemeinsame Pressemitteilung des HZI und der TU Darmstadt

Dr. Jan Grabowski | Helmholtz-Zentrum
Weitere Informationen:
http://dx.doi.org/10.1016/j.jmb.2012.12.017
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/protein_in_spinnengestalt/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics