Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein bei seiner Entfaltung in atomarer Auflösung „gefilmt“

11.02.2013
Wenn Proteine „außer Form“ geraten, können die Folgen fatal sein. Sie verlieren ihre Funktion und in manchen Fällen bilden sie unlösliche, toxische Klumpen, die andere Zellen schädigen und schwere Erkrankungen wie Alzheimer oder Parkinson auslösen können. Forscher haben in atomarem Detail erstmals „gefilmt“, wie sich ein Protein graduell entfaltet.
Mithilfe von Kälte und NMR-Spektroskopie gelang es ihnen, sieben Zwischenformen des CylR2-Proteins während der Abkühlung von 25°C auf -16°C sichtbar zu machen. Die Erkenntnisse der Forscher können zu einem verbesserten Verständnis beitragen, wie Proteine ihre Struktur annehmen und sich im Krankheitsfall falsch falten.

Ob Alzheimer, Parkinson oder Chorea Huntington – alle drei Erkrankungen haben eine gemeinsame Ursache: Falsch gefaltete Proteine lagern sich im Gehirn der Betroffenen zu unlöslichen Klumpen zusammen und zerstören die Nervenzellen. Eine der wichtigsten Fragen der Biowissenschaften und Medizin ist daher, wie Proteine – die Werkzeuge lebender Zellen – ihre dreidimensionale Form erlangen oder verlieren. Denn nur, wenn ihre Ketten von Aminosäuren in einer bestimmten Weise räumlich gefaltet sind, können Proteine ihre Aufgaben erfüllen. Was genau passiert, wenn Proteine sich falten oder entfalten, konnte man bisher nur schwer untersuchen. Mit Hitze und Druck verliert ein Protein zwar leicht seine Form – und damit seine Funktion. Doch um es bei seinem Entfaltungsprozess direkt zu beobachten, sind die gängigen Methoden nicht geeignet. Seine Zwischenformen bei der Proteinentfaltung sind viel zu kurzlebig.

„Schnappschüsse“ bei der Entfaltung des CylR2-Protein aus Enterococcus faecalis: Wird das Protein von 25°C auf -16°C abgekühlt, zerfällt es schrittweise in seine beiden identischen Untereinheiten. Diese sind zunächst stabil, bilden aber bei -16°C eine instabile, dynamische Proteinform, die eine Schlüsselrolle bei der Faltung spielt.

Bild: Zweckstetter, Max-Planck-Institut für biophysikalische Chemie & Deutsches Zentrum für Neurodegenerative Erkrankungen

Mit einem neuen Ansatz ist es Forschern jetzt erstmals gelungen, den komplexen Prozess der Proteinentfaltung zu „filmen“. Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie (MPIbpc) und des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) am Standort Göttingen haben gemeinsam mit ihren Kollegen an der Polnischen Akademie der Wissenschaften in Warschau und der Universität Warschau in atomarer Auflösung sichtbar gemacht, wie ein Protein schrittweise „außer Form“ gerät. Dabei setzten sie auf Kälte. „Wird ein Protein langsam abgekühlt, reichern sich seine Zwischenstufen in größerer Menge an als bei gängigen Methoden wie Hitze, Druck oder Harnstoff. Unsere Hoffnung war, dass diese Mengen ausreichen, um sie mit der Kernspinresonanz (NMR)-Spektroskopie zu untersuchen“, so Markus Zweckstetter, Leiter der Forschungsgruppen „Proteinstrukturbestimmung mittels NMR“ am MPIbpc und „Strukturbiologie bei demenziellen Erkrankungen“ am DZNE-Standort Göttingen.

Wie ein Protein außer Form gerät

Als Untersuchungsobjekt wählte das Team um Zweckstetter ein Schlüsselprotein für die Toxinproduktion in Enterococcus faecalis, ein häufig in Krankenhäusern anzutreffender Erreger, der besonders Patienten mit einem schwachen Immunsystem gefährdet. Das sogenannte CylR2 ist nicht nur biologisch interessant. Vor einiger Zeit war es den Forschern um Stefan Becker am MPIbpc gelungen, die Struktur von CylR2 aufzuklären, die zeigt: Seine Form macht es zu einem vielversprechenden Kandidaten für den Ansatz der Göttinger Wissenschaftler. „ClyR2 ist ein relativ kleines Protein aus zwei identischen Untereinheiten. Die Chance war daher groß, dass sich die einzelnen Schritte bei seiner Entfaltung im Detail sichtbar machen lassen“, erklären die Chemiker Mariusz und Lukasz Jaremko.

Zunächst galt es für die Gruppe von Stefan Becker, das Protein in ausreichender Menge im Labor herzustellen. Anschließend kühlten die beiden Chemiker das Protein schrittweise von 25°C auf -16°C ab und untersuchten es mithilfe der NMR-Spektroskopie – mit Erfolg. Ihr „Filmclip“ zeigt in atomarer Auflösung, wie sich das Protein schrittweise immer weiter entfaltet. Der Strukturbiologe Markus Zweckstetter beschreibt, was dabei passiert: „Man sieht, wie das CylR2-Protein schließlich in seine beiden Untereinheiten zerfällt. Die einzelne Untereinheit ist zunächst relativ stabil. Bei weiterer Abkühlung entfaltet sich diese weiter und wird bei -16°C äußerst instabil und dynamisch. Diese instabile Proteinform bildet den Ausgangspunkt für die Faltung und kann auch der Auslöser sein, dass CylR2 außer Form gerät.“ Die Erkenntnisse der Göttinger Wissenschaftler können dazu beitragen, besser zu verstehen, wie Proteine ihre räumliche Struktur annehmen und warum sich Zwischenformen bestimmter Proteine im Krankheitsfall falsch falten.

Originalveröffentlichung:
Mariusz Jaremko, Lukasz Jaremko, Hai-Young Kim, Min-Kyu Cho, Charles D. Schwieters, Karin Giller, Stefan Becker, Markus Zweckstetter: Cold-denaturation of a protein dimer monitored at atomic resolution. Nature Chemical Biology, DOI:10.1038/NChemBio.1181 (2013).
Kontakt:
Prof. Dr. Markus Zweckstetter
Forschungsgruppe „Proteinstrukturbestimmung mittels NMR“
Max-Planck-Institut für biophysikalische Chemie und
Forschungsgruppe „Strukturbiologie bei demenziellen Erkrankungen“
Deutsches Zentrum für Neurodegenerative Erkrankungen in Göttingen
Tel.: +49 551 / 201-2220
E-Mail: Markus.Zweckstetter@dzne.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 / 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de

Dr. Dirk Förger
Leiter Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn
Tel.: +49 228 / 43302-260
E-Mail: dirk.foerger@dzne.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.dzne.de/
http://www.mpibpc.mpg.de/9606168/pr_1302

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops