Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein bei seiner Entfaltung in atomarer Auflösung „gefilmt“

11.02.2013
Wenn Proteine „außer Form“ geraten, können die Folgen fatal sein. Sie verlieren ihre Funktion und in manchen Fällen bilden sie unlösliche, toxische Klumpen, die andere Zellen schädigen und schwere Erkrankungen wie Alzheimer oder Parkinson auslösen können. Forscher haben in atomarem Detail erstmals „gefilmt“, wie sich ein Protein graduell entfaltet.
Mithilfe von Kälte und NMR-Spektroskopie gelang es ihnen, sieben Zwischenformen des CylR2-Proteins während der Abkühlung von 25°C auf -16°C sichtbar zu machen. Die Erkenntnisse der Forscher können zu einem verbesserten Verständnis beitragen, wie Proteine ihre Struktur annehmen und sich im Krankheitsfall falsch falten.

Ob Alzheimer, Parkinson oder Chorea Huntington – alle drei Erkrankungen haben eine gemeinsame Ursache: Falsch gefaltete Proteine lagern sich im Gehirn der Betroffenen zu unlöslichen Klumpen zusammen und zerstören die Nervenzellen. Eine der wichtigsten Fragen der Biowissenschaften und Medizin ist daher, wie Proteine – die Werkzeuge lebender Zellen – ihre dreidimensionale Form erlangen oder verlieren. Denn nur, wenn ihre Ketten von Aminosäuren in einer bestimmten Weise räumlich gefaltet sind, können Proteine ihre Aufgaben erfüllen. Was genau passiert, wenn Proteine sich falten oder entfalten, konnte man bisher nur schwer untersuchen. Mit Hitze und Druck verliert ein Protein zwar leicht seine Form – und damit seine Funktion. Doch um es bei seinem Entfaltungsprozess direkt zu beobachten, sind die gängigen Methoden nicht geeignet. Seine Zwischenformen bei der Proteinentfaltung sind viel zu kurzlebig.

„Schnappschüsse“ bei der Entfaltung des CylR2-Protein aus Enterococcus faecalis: Wird das Protein von 25°C auf -16°C abgekühlt, zerfällt es schrittweise in seine beiden identischen Untereinheiten. Diese sind zunächst stabil, bilden aber bei -16°C eine instabile, dynamische Proteinform, die eine Schlüsselrolle bei der Faltung spielt.

Bild: Zweckstetter, Max-Planck-Institut für biophysikalische Chemie & Deutsches Zentrum für Neurodegenerative Erkrankungen

Mit einem neuen Ansatz ist es Forschern jetzt erstmals gelungen, den komplexen Prozess der Proteinentfaltung zu „filmen“. Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie (MPIbpc) und des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) am Standort Göttingen haben gemeinsam mit ihren Kollegen an der Polnischen Akademie der Wissenschaften in Warschau und der Universität Warschau in atomarer Auflösung sichtbar gemacht, wie ein Protein schrittweise „außer Form“ gerät. Dabei setzten sie auf Kälte. „Wird ein Protein langsam abgekühlt, reichern sich seine Zwischenstufen in größerer Menge an als bei gängigen Methoden wie Hitze, Druck oder Harnstoff. Unsere Hoffnung war, dass diese Mengen ausreichen, um sie mit der Kernspinresonanz (NMR)-Spektroskopie zu untersuchen“, so Markus Zweckstetter, Leiter der Forschungsgruppen „Proteinstrukturbestimmung mittels NMR“ am MPIbpc und „Strukturbiologie bei demenziellen Erkrankungen“ am DZNE-Standort Göttingen.

Wie ein Protein außer Form gerät

Als Untersuchungsobjekt wählte das Team um Zweckstetter ein Schlüsselprotein für die Toxinproduktion in Enterococcus faecalis, ein häufig in Krankenhäusern anzutreffender Erreger, der besonders Patienten mit einem schwachen Immunsystem gefährdet. Das sogenannte CylR2 ist nicht nur biologisch interessant. Vor einiger Zeit war es den Forschern um Stefan Becker am MPIbpc gelungen, die Struktur von CylR2 aufzuklären, die zeigt: Seine Form macht es zu einem vielversprechenden Kandidaten für den Ansatz der Göttinger Wissenschaftler. „ClyR2 ist ein relativ kleines Protein aus zwei identischen Untereinheiten. Die Chance war daher groß, dass sich die einzelnen Schritte bei seiner Entfaltung im Detail sichtbar machen lassen“, erklären die Chemiker Mariusz und Lukasz Jaremko.

Zunächst galt es für die Gruppe von Stefan Becker, das Protein in ausreichender Menge im Labor herzustellen. Anschließend kühlten die beiden Chemiker das Protein schrittweise von 25°C auf -16°C ab und untersuchten es mithilfe der NMR-Spektroskopie – mit Erfolg. Ihr „Filmclip“ zeigt in atomarer Auflösung, wie sich das Protein schrittweise immer weiter entfaltet. Der Strukturbiologe Markus Zweckstetter beschreibt, was dabei passiert: „Man sieht, wie das CylR2-Protein schließlich in seine beiden Untereinheiten zerfällt. Die einzelne Untereinheit ist zunächst relativ stabil. Bei weiterer Abkühlung entfaltet sich diese weiter und wird bei -16°C äußerst instabil und dynamisch. Diese instabile Proteinform bildet den Ausgangspunkt für die Faltung und kann auch der Auslöser sein, dass CylR2 außer Form gerät.“ Die Erkenntnisse der Göttinger Wissenschaftler können dazu beitragen, besser zu verstehen, wie Proteine ihre räumliche Struktur annehmen und warum sich Zwischenformen bestimmter Proteine im Krankheitsfall falsch falten.

Originalveröffentlichung:
Mariusz Jaremko, Lukasz Jaremko, Hai-Young Kim, Min-Kyu Cho, Charles D. Schwieters, Karin Giller, Stefan Becker, Markus Zweckstetter: Cold-denaturation of a protein dimer monitored at atomic resolution. Nature Chemical Biology, DOI:10.1038/NChemBio.1181 (2013).
Kontakt:
Prof. Dr. Markus Zweckstetter
Forschungsgruppe „Proteinstrukturbestimmung mittels NMR“
Max-Planck-Institut für biophysikalische Chemie und
Forschungsgruppe „Strukturbiologie bei demenziellen Erkrankungen“
Deutsches Zentrum für Neurodegenerative Erkrankungen in Göttingen
Tel.: +49 551 / 201-2220
E-Mail: Markus.Zweckstetter@dzne.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 / 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de

Dr. Dirk Förger
Leiter Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn
Tel.: +49 228 / 43302-260
E-Mail: dirk.foerger@dzne.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.dzne.de/
http://www.mpibpc.mpg.de/9606168/pr_1302

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops