Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Programmierte Nanopartikel organisieren sich zu hochkomplexen Strukturen

06.11.2013
Forschungsergebnisse in Zeitschrift Nature veröffentlicht

Zellen von Pflanzen und Tieren sind ein prominentes Beispiel dafür, wie die Natur – ausgehend von kleinen Bausteinen – in einer zielgerichteten, vorprogrammierten Weise immer größere Einheiten aufbaut.

Die Nanotechnologie versucht dieses „Bottom-up“-Prinzip zu kopieren, indem sie die Fähigkeit von Nanopartikeln zur selbständigen Strukturbildung nutzt. Ein Team von Wissenschaftlerinnen und Wissenschaftlern mit Dr. Andreas Walther vom DWI an der RWTH Aachen - Institute for Interactive Materials Research, Prof. Dr. Axel Müller der Universität Bayreuth (jetzt an der Universität Mainz) sowie den Universitäten in Jena und Helsinki veröffentlichte in der Fachzeitschrift „Nature“ ein neuartiges Prinzip zum Aufbau hochkomplexer Nanostrukturen.

Als Grundlage dafür dienen wenige Nanometer große Partikel, die sich – ähnlich dem LEGO-Prinzip – passgenau kombinieren lassen. Die Erkenntnisse der Wissenschaftler ermöglichen die Herstellung völlig neuer, funktionaler Nanostrukturen und sind wegweisend für die weitere Forschung auf diesem Gebiet.

Ausgangspunkt sind kettenartige Makromoleküle mit einer Größe zwischen zehn und 20 Nanometern, „Triblock-Terpolymere“ genannt. Diese bestehen aus drei miteinander verbundenen Abschnitten, so genannten Blöcken. Die Forschungsgruppe konnte diese dreiteiligen Makromoleküle dazu veranlassen, sich zu Nanopartikeln mit einem Durchmesser von rund 50 Nanometern zusammenzuschließen.

Dieses Verfahren wurde auf zwei Sorten von „Triblock-Terpolymeren“ mit unterschiedlicher chemischer Beschaffenheit der mittleren Blöcke angewendet: „A – B – C“ und „A – D – C“. Erstere bilden Nanopartikel mit nur einer Bindungsstelle und tendieren dazu, sich zu ku-gelartigen Überstrukturen zusammenfinden; letztere bilden Nanopartikel mit zwei Bindungsstellen und sind dementsprechend geneigt, sich in kettenartigen Überstruk-turen zu organisieren. Entscheidend ist dabei: In beiden Fällen ist die Struktur der Nanopartikel durch die Synthese der zugrunde liegenden Makromoleküle vorpro-grammiert, ähnlich wie die Struktur eines Proteins durch die Abfolge der Aminosäuren vorherbestimmt wird.

Die unterschiedlich strukturierten Nanopartikel wurden so kombiniert, dass sie ge-meinsam – in einem Prozess der Co-Aggregation – eine völlig neue Überstruktur bil-den. Darin wechseln sich Nanopartikel, die aus Molekülen mit der Struktur „A – B – C“ hervorgegangen sind, und Nanopartikel, die sich aus Molekülen mit der Struktur „A – D – C“ gebildet haben, in einer exakt definierten Weise ab. Die neue übergeordnete Struktur hat, wenn sie mit dem Elektronenmikroskop sichtbar gemacht wird, starke Ähnlichkeit mit einer farbenprächtigen Schmetterlingsraupe.

Der vorgestellte Ansatz eröffnet weitreichende Zukunftsperspektiven. Besonders at-traktiv ist dabei die Vielzahl der Makromoleküle, die als Grundbausteine in Frage kommen. Sie können dazu dienen, bestimmte Funktionalitäten gezielt in die ange-strebten Großstrukturen einzuschleusen, beispielsweise die Sensibilität für Einflüsse aus der Umgebung wie Temperatur, Licht, elektrische und magnetische Felder oder die Schaltbarkeit. Denkbare Anwendungen sind die Nanostrukturierung oder die ziel-gerichtete Medikamentenfreisetzung.

„Unsere Arbeit zeigt, wie weit mittlerweile das Verständnis in der weichen Nanotech-nologie fortgeschritten ist, um enorm komplexe Verbände durch molekulare Pro-grammierung zu erzeugen“, so Andreas Walther. Er erklärt das nächste große Ziel: „Die Natur organisiert ihre Materie nicht nur räumlich, sondern auch in zeitlicher Ab-hängigkeit. Wir sind in der Programmierung der räumlichen Organisation schon außerordentlich weit fortgeschritten. Bis jetzt fehlen uns allerdings die Möglichkeiten, um auch eine effiziente zeitliche Kontrolle zu realisieren. Dies stellt eine der Aufgaben dar, welcher wir uns am DWI stellen.“

Veröffentlichung:
André H. Gröschel, Andreas Walther, Tina I. Löbling, Felix H. Schacher, Holger Schmalz, Axel H.E. Müller, „Guided Hierarchical Co-Assembly of Soft Patchy Nanoparticles“, in: Nature, DOI: 10.1038/nature12610
Weitere Infos:
Dr. Andreas Walther
DWI an der RWTH Aachen e.V.
Institute for Interactive Materials Research
Tel.: 0241/80-23336
walther@dwi.rwth-aachen.de

Celina Begolli | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie