Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Problematische Beziehung: Kleine Hirnmodelle geben Kontaktintensität zwischen Neuronen verzerrt wider

08.09.2015

Die Simulation von Hirnfunktionen mit Supercomputern soll dazu beitragen, die Abläufe in unserem Gehirn zu verstehen. Diese Aufgabe ist gigantisch: Schätzungsweise 100 Milliarden Nervenzellen müssen in ihrer Aktivität abgebildet werden. Eine bisher unlösbare Aufgabe, da selbst die leistungsstärksten Rechner der Welt aufgrund ihrer Speicherkapazität momentan gerade ein Prozent davon simulieren können.

Wissenschaftler behelfen sich daher mit verkleinerten Modellen. Doch das so genannte "Downscaling" ist problematisch, wie eine aktuelle Jülicher Forschungsstudie zeigt, die in PLOS Computational Biology (11(9): e1004490) veröffentlicht wurde.


Netzwerk-Modell: Neuronen mit stark synchroner Aktivität haben eine hohe Korrelation, während Neuronen mit unkoordinierter Aktivität schwach korreliert sind.

Copyright: Forschungszentrum Jülich

"Die Herausforderung der Hirnsimulation besteht darin, dass die Nervenzellen je nach anstehender Aufgabe eine zeitlich begrenzte Beziehung mit anderen Neuronen eingehen", erläutert Prof. Dr. Markus Diesmann, Direktor des Jülicher Instituts "Computational and Systems Neuroscience" (INM-6). Jede Nervenzelle ist im Schnitt mit 10.000 anderen Neuronen vernetzt, die ihre Aktivität unterschiedlich stark untereinander synchronisieren. Die Intensität der Beziehung von Neuronen - Korrelation genannt – variiert, je nach Aufgabe und beteiligten Hirnarealen. Wie Dr. Sacha van Albada, wissenschaftliche Mitarbeiterin von Markus Diesmann, Dr. Moritz Helias, Leiter der Arbeitsgruppe "Theory of Multi-Scale Neuronal Networks", und Diesmann mit mathematischen Methoden nun nachwiesen, kann diese Beziehungsgröße nicht korrekt erhalten werden, wenn im Hirnmodell die Anzahl der Neuronenkontakte unter einer bestimmten Grenze liegt. Korrelationen sind aber die Grundlage häufig genutzter, im Gehirn messbarer Signale wie dem EEG und dem lokalen Feldpotential (LFP).

Jede Nervenzelle hat um die 10.000 Kontaktstellen, über die sie kommuniziert

Der Informationsfluss im menschlichen Gehirn ist äußert komplex. Nervenzellen tauschen Informationen in Form von elektrischen Signalen untereinander über sogenannte Synapsen aus. Jede einzelne Nervenzelle hat etwa 10.000 solcher Kontaktstellen, mit denen sie mit anderen Neuronen kommuniziert. Ähnlich wie das Autobahnnetz nicht festlegt, welches Auto wohin fahren wird, wählen die Daten im Gehirn je nach Aufgabe unterschiedliche Wege und Ausfahrten. Computer der jetzigen Generation können diese gigantische Informationsmenge nicht verarbeiten und speichern. In vielen Hirnmodellen wird die Synapsenzahl daher verringert, um den Speicherverbrauch zu reduzieren.

Die detailgetreue Simulation des menschlichen Gehirns ist Ziel des Human Brain Projects (HBP)

Doch die detailgetreue Simulation des kompletten menschlichen Gehirns auf einem Supercomputer der Zukunft bleibt das Ziel eines wissenschaftlichen Großprojekts. Im Rahmen des von der Europäischen Union geförderten "Human Brain Projects" (HBP) arbeiten Neurowissenschaftler und Physiker wie Markus Diesmann gemeinsam mit Informatikern, Medizinern und Mathematikern aus über 80 europäischen und internationalen wissenschaftlichen Einrichtungen zusammen. "Unsere aktuelle Forschungsarbeit zeigt einmal mehr: An der Simulation von Hirnschaltkreisen in ihrer vollen Größe führt kein Weg vorbei, wenn wir fundierte Erkenntnisse gewinnen möchten", so Diesmann.

Zu den herausforderndsten Aufgaben im Human Brain Project gehört die Entwicklung neuer Höchstleistungsrechner. Auch hier sind Jülicher Wissenschaftler federführend beteiligt: Das Jülicher Supercomputing Centre (JSC) entwickelt Exascale-Rechner, um die komplexen Simulationen im Human Brain Project durchführen zu können. Hierfür wird eine Rechenleistung benötigt, die um den Faktor 100 höher ist als die der heutigen Höchstleistungsrechner. Markus Diesmann arbeitet mit Kolleginnen und Kollegen parallel daran, die Simulationssoftware für die neue Rechnergeneration weiterzuentwickeln. Dies erfolgt im Rahmen des Jülicher Instituts "Theoretical Neuroscience" (IAS-6) und der Neural Simulation Technology Initiative, welche die Software NEST über das Internet frei zur Verfügung stellt.

Originalpublikation:

Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations
van Albada SJ, Helias M, Diesmann M.
PLoS Comput Biol. 2015 Sep 1;11(9):e1004490. doi: 10.1371/journal.pcbi.1004490
Article (Open Access): http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004490#

Weitere Informationen:
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6) & Theoretical Neuroscience (IAS-6): http://www.fz-juelich.de/inm/inm-6/EN/Home/home_node_INM6.html
Human Brain Project: http://www.humanbrainproject.eu
Neural Simulation Technology Initiative: http://www.nest-initiative.org

Ansprechpartner:

Prof. Dr. Markus Diesmann, Leiter des Instituts für Neurowissenschaften und Medizin,
Computational and Systems Neuroscience (INM-6) & Theoretical Neuroscience (IAS-6)
Tel. +49 2461 61-9301
E-Mail: m.diesmann@fz-juelich.de

Dr. Sacha van Albada, Institut für Neurowissenschaften und Medizin,
Computational and Systems Neuroscience (INM-6) & Theoretical Neuroscience (IAS-6)
Tel. +49 2461 61-1944
E-Mail: s.van.albada@fz-juelich.de

Dr. Moritz Helias, Institut für Neurowissenschaften und Medizin,
Computational and Systems Neuroscience (INM-6) & Theoretical Neuroscience (IAS-6)
Tel. +49 2461 61-9467
E-Mail: m.helias@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten