Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poren öffnen dem Tod die Tür

02.09.2008
Wissenschaftler klären den Hauptzugangsweg, über den Virus-befallene Körperzellen und Tumorzellen von körpereigenen Abwehrstoffen angegriffen werden

Unser Körper wird nahezu kontinuierlich von Krankheitserregern und spontan entstehenden Krebszellen bedroht. Doch der Körper wehrt sich: Spezialisierte Zellen des Immunsystems schleusen kleine Moleküle (Granzyme) in Virus-befallene Körperzellen sowie Krebszellen ein, und lösen so das eingebaute Selbstmordprogramm der Zellen aus. Um in eine attackierte Zelle zu gelangen, gibt es zwei mögliche Wege. Trotz mehr als zwanzigjähriger intensiver Forschung blieb jedoch unklar, auf welchem der beiden Wege die tödliche Menge an Granzymen in eine Zelle eindringt. Wissenschaftler des Max-Planck-Instituts für Neurobiologie zeigen nun, dass winzige Poren in der Zelloberfläche den Granzymen für kurze Zeit die Tür öffnen. Die Ergebnisse eröffnen auch neue Perspektiven für eine verbesserte Therapie von chronischen Virusinfektionen und Krebs- erkrankungen. (PNAS, 2. September 2008)


Granzyme bei ihrer tödlichen Arbeit: Eine Killerzelle kontaktiert eine Tumorzelle (links) und löst sich nach einer Stunde (Mitte). Nach weiteren zwei Stunden bilden sich Bläschen (rechts, roter Pfeil) auf der Oberfläche der angegriffenen Tumorzelle. Die Tumorzelle schrumpft, stirbt und zerfällt. Bild: Max-Planck-Institut für Neurobiologie / Jenne

Während des alltäglichen Lebens wird uns nur selten bewusst, welche Kämpfe im eigenen Körper stattfinden. Nahezu kontinuierlich muss sich der Körper gegen unzählige Krankheitserreger wehren. Mit jedem Liter Blut, der durch unseren Körper gepumpt wird, werden daher bis zu fünf Milliarden weiße Blutkörperchen auf Patrouille geschickt. Ein Teil dieser Zellen reagiert auf Krankheitserreger mit der Produktion von Antikörpern, die exakt auf den erkannten Erreger zugeschnitten sind und diesen präzise angreifen. Gleichzeitig lassen sie Gedächtniszellen entstehen, die diesen Erreger bei einem erneuten Angriff wiedererkennen.

Neben diesen Taktikern unter den weißen Blutkörperchen gibt es eine zweite Gruppe von Zellen, die ohne große Umschweife gleich zum Angriff übergeht: T- und Killer-Zellen haben sich auf Virus-infizierte Körperzellen und Tumorzellen spezialisiert - hier ist ein sofortiges Handeln besonders wichtig. Doch ganz ohne Taktik geht es auch bei diesen Angriffszellen nicht. Denn zunächst müssen die Waffen dieser Zellen, die sogenannten Granzyme, in die kranke Zelle eingeschleust werden. Erst dort entfalten sie ihre Wirkung: Sie manipulieren die schädliche Zelle so, dass sie ihr eingebautes Selbstmordprogramm aktiviert. Doch wie kommen die Granzyme in die Zelle?

Diese Frage diskutieren Wissenschaftler seit mehr als zwanzig Jahren. Zwei Wege, über die Granzyme in eine Zelle gelangen können, wurden dabei diskutiert: über Poren oder über einen Membrantransport. Das Molekül Perforin hinterlässt kleine Löcher in der Zellmembran. Da es von T- und Killer-Zellen zeitgleich mit den Granzymen abgegeben wird, könnten sich hiermit Türen für Granzyme öffnen. Granzyme binden aber auch an die Oberfläche der attackierten Zellen und werden dann über kleine Membraneinschnürungen in das Zellinnere transportiert. Da die Perforin-Löcher in der Zellmembran recht klein sind und von der attackierten Zelle schnell wieder geschlossen werden, favorisierten die meisten Wissenschaftler den Membrantransport als Hauptzugang für Granzyme in eine Zelle.

Die Frage, welcher Weg die tödliche Menge Granzyme in eine Zelle bringt, ist nicht trivial. Mit diesem Wissen könnten neue Therapien zur Virus- und Krebsbekämpfung entwickelt werden. Nach zwanzig Jahren scheinen Wissenschaftler des Max-Planck-Instituts für Neurobiologie diese Frage nun geklärt zu haben: Entgegen der gängigen Meinung sind offenbar tatsächlich die Membranlöcher die Haupteintrittspforte für Granzyme. Den Beweis erbrachten die Wissenschaftler mit künstlich veränderten Granzymen, die nicht mehr an Membranen binden und somit nicht via Membrantransport in die Zelle gelangen können. "Interessanterweise war trotz dieser Einschränkung keine verminderte Effektivität der Angriffszellen festzustellen", erklärt Dieter Jenne. "Wir konnten außerdem zeigen, dass die Poren groß genug sind, um genügend Granzyme in die Zelle zu lassen, bevor diese die Löcher wieder abdichten kann."

"Das spannende an diesen Ergebnissen ist aber nicht nur, dass eine alte Frage nun endlich geklärt ist", sagt Florian Kurschus, "sondern dass unsere Granzym-Varianten zusammen mit dem Wissen, dass die Membranlöcher der wichtigste Zugang zur Zelle sind, verbesserte Therapiemöglichkeiten zur Virus- und Krebsbekämpfung bieten." Denn künstlich zugegebene Granzyme schädigen in hoher Dosis auch gesunde Zellen, in die sie über Membrantransport eindringen. Die neuen Granzym-Varianten reichern sich nicht in gesunden Zellen an, da sie nur den durch T- oder Killer-Zellen mittels Perforin eröffneten Weg nutzen können. Bei infizierten Zellen, die von einer T- oder Killer-Zelle als Feind erkannt wurden, wird ihnen diese Tür geöffnet - weit genug für ihre todbringende Arbeit.

Originalveröffentlichung:

Florian Kurschus, Edward Fellows, Elisabeth Stegmann, Dieter Jenne
Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis

PNAS, 2. September 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie