Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen unsichtbares Licht wahrnehmen

03.04.2012
Mit spezialisierten Photorezeptoren können Pflanzen Licht nutzen, das für uns unsichtbar ist. Strukturanalysen des kürzlich entdeckten UVR8-Rezeptors zeigen, wie ultraviolette Lichtsignale zum Umbau des Lichtrezeptors führen. Auf diese Weise gibt die Pflanze das Signal zur Einleitung eines wichtigen Schutzprogramms.

Über die Wahrnehmung von Licht steuern Pflanzen Wachstum, Keimung, Blütenbildung und die Kontrolle über ihren Tages- und Nachtrhythmus. Damit Pflanzen Licht auch tatsächlich „sehen“ können, besitzen sie auf unterschiedliche Lichtspektren spezialisierte Lichtrezeptoren.

Die bekanntesten Photorezeptoren sind die sogenannten Phytochrome, die das Verhältnis zwischen hell- und dunkelrotem Licht messen. Sie steuern wichtige Entwicklungsvorgänge von Pflanzen, wie beispielsweise die Samenkeimung und das Ergrünen von Pflanzenteilen.

Pflanzen können jedoch auch für uns unsichtbares Licht wahrnehmen. Studien in den 70er Jahren zeigten bereits, dass Pflanzen bei Bestrahlung mit ultraviolettem (UV) Licht Sonnencreme-ähnliche Schutzfaktoren produzieren. Sie sind Teil des sogenannten UV-B Signalweges, mit dem sich die Pflanze vor der schädlichen Wirkung von UV-Strahlung schützt. Zu diesen negativen Effekten gehören beispielsweise DNA-Schäden und eine geringere Photosyntheseleistung. Lange waren die Lichtrezeptoren, die den UV-B Signalweg auslösen nicht bekannt. Erst vor Kurzem wurde der UV-Rezeptor UVR8 als Teil dieser Signalleitung entdeckt. Allerdings blieb unklar wie genau der Rezeptor das UV-Licht aufnimmt und das Signal an die Zelle weiterleiten.

Mit der Strukturanalysen des UVR8-Rezeptors von Arabidopsis thaliana brachten Wissenschaftler jetzt Licht in das Dunkel um die Frage, wie UVR8 als UV-Sensor funktioniert. In Pflanzenzellen liegen UVR8-Rezeptoren in zwei strukturellen Zuständen vor: Einer Licht- und einer Dunkelform. Bei Dunkelheit geht das ringförmige UVR8-Molekül mit einem zweiten UVR8-Molekül eine Verbindung ein. Die beiden Doughnut-artigen Moleküle werden durch Salzbrücken und aromatische Aminosäuren wie ein Sandwich zusammengehalten. Wird die Pflanze mit UV-Licht bestrahlt, zerfällt das Doughnut-Sandwich wieder in zwei Einzelmoleküle. Diese sind daraufhin frei, um mit anderen Proteinpartnern eine Bindung einzugehen. Im Falle von UVR8 bindet der Faktor COP1, der für die Einleitung des genetischen Schutzprogramms zuständig ist.

Das Hin- und Herschalten zwischen dem einfachen und dem Doppelmolekül wird beim UVR8-Rezeptor durch ein besonderes strukturelles Merkmal möglich, das UVR8 von allen anderen bisher bekannten Photorezeptoren unterscheidet: Statt der für Photorezeptoren typischen Chromophor-Struktur, besitzt es auf seiner Kontaktfläche eine Aminosäuren-Pyramide, die aus Tryptophan-Resten besteht. Durch einen UV-Lichtreiz, werden die Elektronen dieser Aminosäuren angeregt und auf benachbarte Aminosäuren übertragen. Auf diese Weise werden Ladungen neutralisiert, die die beiden Moleküle zusammenhalten und die UVR8-Moleküle trennen sich. Die Tryptophan-Pyramide ist demnach der entscheidende UV-Lichtsensor, der das Licht einfängt und die absorbierte Lichtenergie weiterleitet.

UVR8 ist auch in ursprünglichen Pflanzen, wie beispielsweise Moosen und Algen zu finden. Die Wissenschaftler vermuten daher, dass der Rezeptor Pflanzen schon in der frühen Erdgeschichte geholfen hat zu überleben, als die Erde noch größeren Strahlenmengen ultravioletten Lichts ausgesetzt war.

Der durch Lichtsignale ausgelöste Strukturumbau des Rezeptors könnte auch Biotechnologen zu neuen Werkzeugen inspirieren. Proteine, deren Architektur gezielt durch Lichteinstrahlung gesteuert wird, sind mittlerweile wertvolle Instrumente der zellbiologischen Forschung. Mit photoschaltbaren Molekülen lassen sich Prozesse in lebenden Zellen verfolgen und bestimmten Organen zuordnen. Wie die Experimente der Forscher zeigen lässt sich durch Mutationen der Tryptophan-Pyramide, sogar das Absorptionspektrum von UVR8 verschieben.

Quellen:
J. M. Christie (2012): Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges. In: Science. Online Publikation, März 2012, DOI: 10.1105/tpc.112.240311

K. H. Gardner and F. Correa (2012): How Plants See the Invisible. In: Science. Online Publikation, März 2012, DOI: 10.1126/science.12202

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsforschung in der Schwerelosigkeit
18.12.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht Von Alaska bis zum Amazonas: Pflanzenmerkmale erstmals kartiert
18.12.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Carmenes“ findet ersten Planeten

Deutsch-spanisches Forscherteam entwirft, baut und nutzt modernen Spektrografen

Seit Januar 2016 nutzt ein deutsch-spanisches Forscherteam mit Beteiligung der Universität Göttingen den modernen Spektrografen „Carmenes“ für die Suche nach...

Im Focus: Fehlerfrei ins Quantencomputer-Zeitalter

Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr...

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Alaska bis zum Amazonas: Pflanzenmerkmale erstmals kartiert

18.12.2017 | Biowissenschaften Chemie

Krebsforschung in der Schwerelosigkeit

18.12.2017 | Biowissenschaften Chemie

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungsnachrichten