Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Passt die Geometrie, stimmt die Chemie - Physiker entschlüsseln chemische Austauschreaktionen

04.06.2012
Chemische Austauschreaktionen laufen in unserem Körper ab, sind in unserer Umwelt allgegenwärtig. Industriell setzen wir sie zum Herstellen von Medikamenten ein.
„Hinter dieser enormen, praktischen Bedeutung stecken ebenso große Rätsel für uns Forscher“, sagt Prof. Roland Wester. Der Innsbrucker Physiker hat mit der direkten Beobachtung von „Geometrieeffekten“ einen Beitrag zur Entschlüsselung dieser Reaktionen vorgelegt. Die Fachzeitschrift Nature Chemistry berichtet darüber in ihrer Online-Ausgabe.

Die Arbeitsgruppe um Roland Wester vom Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck, vormals an der Universität Freiburg in Deutschland, hat experimentell gezeigt, dass bei chemischen Austauschreaktionen nicht alleine die Energie die tragende Rolle spielt. „Bei Reaktionen in Anwesenheit von Wasser dürfte dies vielmehr auch die Geometrie sein, und damit die Frage, wo bestimmte Moleküle sitzen. Sehr vereinfachend könnte man daher sagen, passt die Geometrie, stimmt auch die Chemie“, so Wester. Die Physiker untersuchten in ihrem jüngsten Experiment einzelne Wassermoleküle und deren Einfluss auf die Reaktionsdynamik von Austauschreaktionen bei der Entstehung von Methanol.

Unerwartete Effekte

Das Team ließ dabei in einer eigens entwickelten Apparatur im Vakuum einzelne, negativ geladene Hydroxyl-Ionen mit Iodmethan-Molekülen (CH3I) kollidieren. Bei dieser Reaktion entstehen Methanol (CH3OH) und ein negativ geladenes Jod-Atom. An die Hydroxyl-Ionen hängten die Forscher dann kontrolliert genau ein oder zwei Wassermoleküle an. Dieses Experiment „förderte verschiedene unerwartete Effekte zutage. Entgegen der einfachen Vorstellung verlangsamt und verwischt ein Wassermolekül nicht einfach diese Reaktion, sondern steuert sie vielmehr durch die geometrische Anordnung der Moleküle. So läuft die Reaktion überhaupt erst durch die Anwesenheit eines Wassermoleküls in der Weise ab, wie dies in Chemie-Lehrbüchern beschrieben ist. Dabei nähert sich das Ion dem CH3I–Molekül von einer Seite und das Jod-Atom fliegt nach der Umordnung des molekularen Komplexes in entgegengesetzter Richtung davon. Ohne den Einfluss des Wassers finden wir dagegen ganz andere Reaktionsmechanismen.“, sagt Rico Otto, der mit diesen Experimenten seine Dissertation abschloss. Mit diesen Grundlagenforschungen wollen er und seine Kollegen einen Beitrag zum verbesserten Verständnis dieser komplexen Abläufe liefern. „Letztlich und dies ist ein sehr langfristiges Ziel, könnte dies auch ein Beitrag dazu sein, industrielle Prozesse effizienter ablaufen zu lassen“, sind Wester und Otto überzeugt.

Die in diesen Forschungen untersuchten „Nukleophilen Substitutionsreaktionen“ sind eine der wichtigsten Reaktionsklassen in der Organischen Chemie. Solche chemischen Austauschprozesse, bei denen eine funktionale Gruppe gegen eine andere ausgewechselt wird, laufen z.B. bei der Adrenalin-Synthese in unserem Körper ab. Dort, wie auch in vielen technischen Anwendungen, finden sie normalerweise in Flüssigkeiten statt. Was auf der Ebene der einzelnen beteiligten Teilchen und Moleküle dabei wirklich im Detail passiert, ist bisher kaum erforscht. Warum? Chemische Formeln fassen Reaktionen in einfacher Weise zusammen, sie können aber die komplexe Dynamik der verschiedenen Reaktionsschritte und deren Wechselwirkungen nur sehr schlecht beschreiben. Außerdem kann die Wissenschaft erst seit wenigen Jahren mit ausgeklügelten Laborexperimenten einen Blick auf diese Austauschprozesse werfen und im Grenzgebiet zwischen Chemie und Physik deren Dynamiken besser erfassen. Wie gefragt diese Fähigkeiten sind, konnte Rico Otto bereits persönlich erfahren, er bekam schon vor seiner Dissertation mehrere Angebote auf Forscherstellen weltweit und ist inzwischen an der University of California in San Diego aktiv. Wester wurde für seine Forschungen im Feld der Ion-Molekül-Reaktionen 2009 mit dem Gustav-Hertz-Preis ausgezeichnet. Der Physiker forscht und lehrt seit Oktober 2010 als Professor am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck. Im Vorjahr erhielt er einen „Starting Grant“ des European Research Council (ERC).

Publikation: Single solvent molecules affecting the dynamics of substitution reactions. R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, R. Wester. Nature Chemistry. Advanced Online Publication, am 3. Juni 2012
doi: 10.1038/NCHEM.1362

Rückfragehinweis:

Univ.-Prof. Dr. Roland Wester
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Telefon: +43 512 507-6420
Mail: roland.wester@uibk.ac.at

Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Weitere Informationen:

http://dx.doi.org/10.1038/NCHEM.1362 - Single solvent molecules affecting the dynamics of substitution reactions. R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, R. Wester. Nature Chemistry. Advanced Online Publication, am 3. Juni 2012

Dr. Christian Flatz | idw
Weitere Informationen:
http://www.scinews.at
http://www.uibk.ac.at/ionen-angewandte-physik/molsyst/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie