Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Passt die Geometrie, stimmt die Chemie - Physiker entschlüsseln chemische Austauschreaktionen

04.06.2012
Chemische Austauschreaktionen laufen in unserem Körper ab, sind in unserer Umwelt allgegenwärtig. Industriell setzen wir sie zum Herstellen von Medikamenten ein.
„Hinter dieser enormen, praktischen Bedeutung stecken ebenso große Rätsel für uns Forscher“, sagt Prof. Roland Wester. Der Innsbrucker Physiker hat mit der direkten Beobachtung von „Geometrieeffekten“ einen Beitrag zur Entschlüsselung dieser Reaktionen vorgelegt. Die Fachzeitschrift Nature Chemistry berichtet darüber in ihrer Online-Ausgabe.

Die Arbeitsgruppe um Roland Wester vom Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck, vormals an der Universität Freiburg in Deutschland, hat experimentell gezeigt, dass bei chemischen Austauschreaktionen nicht alleine die Energie die tragende Rolle spielt. „Bei Reaktionen in Anwesenheit von Wasser dürfte dies vielmehr auch die Geometrie sein, und damit die Frage, wo bestimmte Moleküle sitzen. Sehr vereinfachend könnte man daher sagen, passt die Geometrie, stimmt auch die Chemie“, so Wester. Die Physiker untersuchten in ihrem jüngsten Experiment einzelne Wassermoleküle und deren Einfluss auf die Reaktionsdynamik von Austauschreaktionen bei der Entstehung von Methanol.

Unerwartete Effekte

Das Team ließ dabei in einer eigens entwickelten Apparatur im Vakuum einzelne, negativ geladene Hydroxyl-Ionen mit Iodmethan-Molekülen (CH3I) kollidieren. Bei dieser Reaktion entstehen Methanol (CH3OH) und ein negativ geladenes Jod-Atom. An die Hydroxyl-Ionen hängten die Forscher dann kontrolliert genau ein oder zwei Wassermoleküle an. Dieses Experiment „förderte verschiedene unerwartete Effekte zutage. Entgegen der einfachen Vorstellung verlangsamt und verwischt ein Wassermolekül nicht einfach diese Reaktion, sondern steuert sie vielmehr durch die geometrische Anordnung der Moleküle. So läuft die Reaktion überhaupt erst durch die Anwesenheit eines Wassermoleküls in der Weise ab, wie dies in Chemie-Lehrbüchern beschrieben ist. Dabei nähert sich das Ion dem CH3I–Molekül von einer Seite und das Jod-Atom fliegt nach der Umordnung des molekularen Komplexes in entgegengesetzter Richtung davon. Ohne den Einfluss des Wassers finden wir dagegen ganz andere Reaktionsmechanismen.“, sagt Rico Otto, der mit diesen Experimenten seine Dissertation abschloss. Mit diesen Grundlagenforschungen wollen er und seine Kollegen einen Beitrag zum verbesserten Verständnis dieser komplexen Abläufe liefern. „Letztlich und dies ist ein sehr langfristiges Ziel, könnte dies auch ein Beitrag dazu sein, industrielle Prozesse effizienter ablaufen zu lassen“, sind Wester und Otto überzeugt.

Die in diesen Forschungen untersuchten „Nukleophilen Substitutionsreaktionen“ sind eine der wichtigsten Reaktionsklassen in der Organischen Chemie. Solche chemischen Austauschprozesse, bei denen eine funktionale Gruppe gegen eine andere ausgewechselt wird, laufen z.B. bei der Adrenalin-Synthese in unserem Körper ab. Dort, wie auch in vielen technischen Anwendungen, finden sie normalerweise in Flüssigkeiten statt. Was auf der Ebene der einzelnen beteiligten Teilchen und Moleküle dabei wirklich im Detail passiert, ist bisher kaum erforscht. Warum? Chemische Formeln fassen Reaktionen in einfacher Weise zusammen, sie können aber die komplexe Dynamik der verschiedenen Reaktionsschritte und deren Wechselwirkungen nur sehr schlecht beschreiben. Außerdem kann die Wissenschaft erst seit wenigen Jahren mit ausgeklügelten Laborexperimenten einen Blick auf diese Austauschprozesse werfen und im Grenzgebiet zwischen Chemie und Physik deren Dynamiken besser erfassen. Wie gefragt diese Fähigkeiten sind, konnte Rico Otto bereits persönlich erfahren, er bekam schon vor seiner Dissertation mehrere Angebote auf Forscherstellen weltweit und ist inzwischen an der University of California in San Diego aktiv. Wester wurde für seine Forschungen im Feld der Ion-Molekül-Reaktionen 2009 mit dem Gustav-Hertz-Preis ausgezeichnet. Der Physiker forscht und lehrt seit Oktober 2010 als Professor am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck. Im Vorjahr erhielt er einen „Starting Grant“ des European Research Council (ERC).

Publikation: Single solvent molecules affecting the dynamics of substitution reactions. R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, R. Wester. Nature Chemistry. Advanced Online Publication, am 3. Juni 2012
doi: 10.1038/NCHEM.1362

Rückfragehinweis:

Univ.-Prof. Dr. Roland Wester
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Telefon: +43 512 507-6420
Mail: roland.wester@uibk.ac.at

Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Weitere Informationen:

http://dx.doi.org/10.1038/NCHEM.1362 - Single solvent molecules affecting the dynamics of substitution reactions. R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, R. Wester. Nature Chemistry. Advanced Online Publication, am 3. Juni 2012

Dr. Christian Flatz | idw
Weitere Informationen:
http://www.scinews.at
http://www.uibk.ac.at/ionen-angewandte-physik/molsyst/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie