Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pannenhilfe der Antibiotikumproduktion entschlüsselt

14.08.2008
Lichtenberg-Professor Peter Güntert legt gemeinsam mit Forscherkollegen neue Erkenntnisse zur Wirkweise von Antibiotika vor. - Veröffentlichung im renommierten Wissenschaftsjournal Nature am Donnerstag, 14. August

Seit der Entdeckung des Penizillins in den 1920er Jahren versuchen Wissenschaftler unaufhörlich, weitere Antibiotika aus Mikroorganismen zu isolieren - zumeist aus Pilzen oder Bakterien.

Da viele krankheitserregende Bakterienstämme zunehmend Resistenzen ausbilden gegen die bekannten und zugelassenen Antibiotika, kommt der Suche nach neuen, geeigneten Substanzen mit antibakterieller Wirkung heute hohe Bedeutung zu. Allerdings ist das Auffinden bisher unbekannter Mikroorganismen, die solche Substanzen synthetisieren, nur ein möglicher Weg, um neuer Antibiotika habhaft zu werden.

Ein anderer Weg ist, benötigte Antibiotika direkt herzustellen. Dazu muss man allerdings wissen, wie diese molekular aufgebaut sind und wie sie funktionieren - mithin auch, wie sich ihr molekularer Aufbau verändern lässt. Viele dieser Substanzen bestehen aus einer Kette einzelner Bausteine. Durch Austausch einzelner Module nun kann ein Baustein in dem Antibiotikum gezielt verändert und somit ein neues, maßgeschneidertes Molekül mit neuen Eigenschaften erzeugt werden. Man erhält also ein Antibiotikum, das im Erfolgsfall anders wirkt. Soweit die Theorie.

In der Praxis hat dieser Ansatz bisher nur sehr begrenzten Erfolg gehabt. Dies liegt daran, dass man nicht genau weiß, wie das Zusammenspiel der einzelnen Module während der Synthese funktioniert. Vor zwei Jahren entdeckte ein Forscherteam an der Universität Frankfurt am Main einen Mechanismus, mit dessen Hilfe das Antibiotikum-Molekül während der Synthese sozusagen von einem Modul zum anderen weitergereicht wird.

Dabei übernehmen kleine "Transport-Eiweiße" - genauer: zwischen die Synthesemodule geschaltete Peptidyl-Carrier-Proteine (PCP) - quasi die Aufgabe eines Förderbandes: Sie gewährleisten so das Weiterreichen. Um nun wiederum die kontinuierliche Produktion dieser für die Mikroorganismen so wichtigen Substanzen zu garantieren, hat die Natur sicherheitshalber einen "Pannenservice" für die Peptidyl-Carrier-Proteine, eingerichtet. Er hält nach defekten Modulen Ausschau und setzt diese wieder instand. Soweit die Vorgeschichte.

Die molekularen Details dieses wichtigen Reparaturservices, ohne den die Produktion von Antibiotika in den Mikroorganismen wohl um rund 80 Prozent reduziert würde, hat jetzt ein internationales Forscherteam um Professor Dr. Volker Dötsch und den von der VolkswagenStiftung mit 1,25 Millionen Euro geförderten Lichtenberg-Professor Dr. Peter Güntert von der Goethe Universität Frankfurt am Main und dem Frankfurt Institute of Advanced Studies (FIAS) aufgeklärt. Die Ergebnisse werden am 14. August 2008 in der Zeitschrift Nature veröffentlicht. Den Wissenschaftlern ist es gelungen, zum ersten Mal Einzelheiten der Funktionsweise des Pannenservices zu klären.

Mit Hilfe der NMR-Spektroskopie (Nuclear Magnetic Resonance-Spektroskopie) ermittelten sie die Struktur des Reparatur-Eiweißes Thioesterase II sowie eines Komplexes dieses Proteins mit einem Peptidyl-Carrier-Protein. Der wichtigste Teil des PCP-Transporteiweißes ist dabei ein spezieller Ko-Faktor (4'-Phosphopantethein), an den die Syntheseprodukte der einzelnen Module gebunden werden. Durch ihn kann die Weitergabe zum nächsten Modul erfolgen. "Durch die Aufklärung der Funktionsweise und der strukturellen Unterschiede zweier essenzieller Komponenten der Antibiotika-Synthesekette sind wir nun der gezielten Synthese neuer, maßgeschneiderter Substanzen wieder ein Stück näher gekommen", bringt es Professor Peter Güntert auf den Punkt.

Veröffentlichung:
Structural basis for the selectivity of the external thioesterase of the surfactin synthetase

Alexander Koglin (1,2), Frank Löhr (1), Frank Bernhard (1), Vladimir R. Rogov (1,3), Dominique P. Frueh (2), Eric R Strieter (2), Mohammad R. Mofid (4), Peter Güntert (1,5), Gerhard Wagner (2), Christopher T. Walsh (2), Mohamed A. Marahiel (4) & Volker Dötsch (1)

(1) Institute of Biophysical Chemistry, Universität Frankfurt am Main;
(2) Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA;
(3) Institute of Protein Research Pushchino, Russia;
(4) Department of Chemistry/Biochemistry, Universität Marburg;
(5) Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main.
Kontakt
Universität Frankfurt a. M. / Frankfurt Institute for Advanced Studies
Prof. Dr. Peter Güntert
Telefon: 069 798 - 29621
E-mail: guentert@em.uni-frankfurt.de
Hintergrund Lichtenberg-Professuren
Mit ihrer Förderinitiative "Lichtenberg-Professuren" - benannt nach dem Mathematiker, Physiker und Philosophen Georg Christoph Lichtenberg (1742 bis 1799) - gibt die VolkswagenStiftung einen Anstoß für die Eröffnung alternativer Qualifizierungs- und Berufungswege an deutschen Hochschulen. Der Leitgedanke hinter dieser Initiative lässt sich in einem Satz zusammenfassen: Ziel ist es, herausragende Wissenschaftlerinnen und Wissenschaftler in Verbindung mit innovativen Lehr- und Forschungsfeldern zu fördern und damit auch zu einer Profilbildung der besten unter den deutschen Hochschulen beizutragen - im Interesse des Wissenschaftsstandortes Deutschland. Mit den Lichtenberg-Professuren sollen also in einem Zug sowohl thematische als auch strukturelle und forschungspolitische Akzente gesetzt werden.

Dr. Christian Jung | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.volkswagenstiftung.de/service/presse.html?datum=20080811

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie