Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Schalter - Erhellende Impulse im Nervensystem

04.03.2013
Einem deutsch-amerikanischen Team ist es gelungen, Rezeptoren von Nervenzellen für Lichtreize empfänglich zu machen. Dies ermöglicht ganz neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Wenn Nervenzellen miteinander kommunizieren, sind sogenannte Neurorezeptoren entscheidend an der Signalübertragung beteiligt. Sie sind als Transmembranproteine in die Wand der Nervenzellen eingebaut und reichen durch sie hindurch. Die häufigsten Rezeptoren sind die G-Protein-gekoppelten Rezeptoren (GPCRs), zu denen auch bestimmte Glutamatrezeptoren gehören.

Sogenannte metabotrope Glutamatrezeptoren (mGluR) sind an der Regulation der Erregbarkeit der Nervenzelle sowie an der Freisetzung neuronaler Transmitter beteiligt. Außerdem spielen sie eine wichtige Rolle für die synaptische Plastizität, das heißt, sie steuern die Stärke, mit der Reize an der Synapse übertragen werden.

Der Informationsfluss zwischen Nervenzellen hängt entscheidend von der Stärke der Signalübertragung ab. Ohne synaptische Plastizität wären das Lernen und Abspeichern neuer Eindrücke nicht möglich. Das Verständnis der neuronalen Mechanismen ist daher von großem Interesse. Dirk Trauner, Professor für Chemische Biologie und Genetik an der LMU, gelang es nun in Zusammenarbeit mit Professor Ehud Isacoff (University of California, Berkeley) mGluRs durch Licht steuerbar zu machen und sie so gezielt einsetzen zu können.

Trauner ist Spezialist dafür, Moleküle mit einem chemischen Schalter zu versehen, der auf Licht reagiert. Erst kürzlich gelang es ihm etwa, Transmembranproteine lichtabhängig steuerbar zu machen, die normalerweise auf den Botenstoff Acetylcholin reagieren. Nun konnte er in Zusammenarbeit mit amerikanischen Kollegen seine Methode zur Photosensibilisierung von Rezeptoren auf mGluRs ausdehnen. „Licht ist sehr genau kontrollierbar. Mit unserem Konstrukt können wir die Zellen daher mit hoher zeitlicher und räumlicher Auflösung spezifisch ansprechen. Zudem ist die Reaktion reversibel“, erläutert Trauner die Vorteile der Methode.
Schaltbar im Millisekundentakt

Anders als das Netzhaut-Pigment Rhodopsin, das ebenfalls zu den GPCR gehört und als einziges dieser Proteine von Natur aus lichtempfindlich ist, benötigt Trauners optischer Schalter zur Aktivierung keine konstante Beleuchtung und kann innerhalb von Millisekunden ein- und ausgeschaltet werden. „Dies bietet uns einzigartige Möglichkeiten, die spezifischen Funktionen jedes einzelnen Rezeptors aufzuklären“, sagt Trauner. Dies ist besonders wichtig, weil verschiedene mGluRs an dasselbe Protein binden können, aber unterschiedliche Effekte hervorrufen.

Seine Funktionstüchtigkeit zeigte der neue optische Schalter sowohl in Hirngewebe der Maus als auch in lebenden Zebrafischen, wo die Wissenschaftler mithilfe der optischen Schalter zeigen konnten, dass mGluRs an der Schreckreaktion beteiligt sind: Die lichtinduzierte Aktivierung von mGluR setzte die Reizschwelle der Fische herab. Auch für zukünftige therapeutische Anwendungen sind die Ergebnisse der Wissenschaftler interessant, denn viele GPCR sind Ziele von Neurotransmittern, die mit Erkrankungen des zentralen Nervensystems in Zusammenhang stehen.
So könnte auch mGluR ein interessantes Zielmolekül für Krankheiten wie Depressionen und Schizophrenie sein. „Noch ist dies Grundlagenforschung, aber möglicherweise könnte mGluR auch für die Therapie von Sehstörungen eingesetzt werden, da der Rezeptor selektiv in bestimmten retinalen Zellen exprimiert wird“, so Trauner.

Nature Neuroscience 2013) göd

Publikation:
Optical Control of Metabotropic Glutamate Receptors
Joshua Levitz, Carlos Pantoja, Benjamin Gaub, Harald Janovjak, Andreas Reiner, Adam Hoagland, David Schoppik, Brian Kane, Philipp Stawski, Alexander F. Schier, Dirk Trauner, Ehud Y. Isacoff
Nature Neuroscience 2013
Published online: 03 March 2013 | doi:10.1038/nn.3346

Kontakt:
Professor Dr. Dirk Trauner
Department of Chemistry
Tel: +49 (0)89 2180-77800
Fax: +49 (0)89 2180-77972
http://www.cup.uni-muenchen.de/oc/trauner

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie