Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optische Schalter - Erhellende Impulse im Nervensystem

04.03.2013
Einem deutsch-amerikanischen Team ist es gelungen, Rezeptoren von Nervenzellen für Lichtreize empfänglich zu machen. Dies ermöglicht ganz neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Wenn Nervenzellen miteinander kommunizieren, sind sogenannte Neurorezeptoren entscheidend an der Signalübertragung beteiligt. Sie sind als Transmembranproteine in die Wand der Nervenzellen eingebaut und reichen durch sie hindurch. Die häufigsten Rezeptoren sind die G-Protein-gekoppelten Rezeptoren (GPCRs), zu denen auch bestimmte Glutamatrezeptoren gehören.

Sogenannte metabotrope Glutamatrezeptoren (mGluR) sind an der Regulation der Erregbarkeit der Nervenzelle sowie an der Freisetzung neuronaler Transmitter beteiligt. Außerdem spielen sie eine wichtige Rolle für die synaptische Plastizität, das heißt, sie steuern die Stärke, mit der Reize an der Synapse übertragen werden.

Der Informationsfluss zwischen Nervenzellen hängt entscheidend von der Stärke der Signalübertragung ab. Ohne synaptische Plastizität wären das Lernen und Abspeichern neuer Eindrücke nicht möglich. Das Verständnis der neuronalen Mechanismen ist daher von großem Interesse. Dirk Trauner, Professor für Chemische Biologie und Genetik an der LMU, gelang es nun in Zusammenarbeit mit Professor Ehud Isacoff (University of California, Berkeley) mGluRs durch Licht steuerbar zu machen und sie so gezielt einsetzen zu können.

Trauner ist Spezialist dafür, Moleküle mit einem chemischen Schalter zu versehen, der auf Licht reagiert. Erst kürzlich gelang es ihm etwa, Transmembranproteine lichtabhängig steuerbar zu machen, die normalerweise auf den Botenstoff Acetylcholin reagieren. Nun konnte er in Zusammenarbeit mit amerikanischen Kollegen seine Methode zur Photosensibilisierung von Rezeptoren auf mGluRs ausdehnen. „Licht ist sehr genau kontrollierbar. Mit unserem Konstrukt können wir die Zellen daher mit hoher zeitlicher und räumlicher Auflösung spezifisch ansprechen. Zudem ist die Reaktion reversibel“, erläutert Trauner die Vorteile der Methode.
Schaltbar im Millisekundentakt

Anders als das Netzhaut-Pigment Rhodopsin, das ebenfalls zu den GPCR gehört und als einziges dieser Proteine von Natur aus lichtempfindlich ist, benötigt Trauners optischer Schalter zur Aktivierung keine konstante Beleuchtung und kann innerhalb von Millisekunden ein- und ausgeschaltet werden. „Dies bietet uns einzigartige Möglichkeiten, die spezifischen Funktionen jedes einzelnen Rezeptors aufzuklären“, sagt Trauner. Dies ist besonders wichtig, weil verschiedene mGluRs an dasselbe Protein binden können, aber unterschiedliche Effekte hervorrufen.

Seine Funktionstüchtigkeit zeigte der neue optische Schalter sowohl in Hirngewebe der Maus als auch in lebenden Zebrafischen, wo die Wissenschaftler mithilfe der optischen Schalter zeigen konnten, dass mGluRs an der Schreckreaktion beteiligt sind: Die lichtinduzierte Aktivierung von mGluR setzte die Reizschwelle der Fische herab. Auch für zukünftige therapeutische Anwendungen sind die Ergebnisse der Wissenschaftler interessant, denn viele GPCR sind Ziele von Neurotransmittern, die mit Erkrankungen des zentralen Nervensystems in Zusammenhang stehen.
So könnte auch mGluR ein interessantes Zielmolekül für Krankheiten wie Depressionen und Schizophrenie sein. „Noch ist dies Grundlagenforschung, aber möglicherweise könnte mGluR auch für die Therapie von Sehstörungen eingesetzt werden, da der Rezeptor selektiv in bestimmten retinalen Zellen exprimiert wird“, so Trauner.

Nature Neuroscience 2013) göd

Publikation:
Optical Control of Metabotropic Glutamate Receptors
Joshua Levitz, Carlos Pantoja, Benjamin Gaub, Harald Janovjak, Andreas Reiner, Adam Hoagland, David Schoppik, Brian Kane, Philipp Stawski, Alexander F. Schier, Dirk Trauner, Ehud Y. Isacoff
Nature Neuroscience 2013
Published online: 03 March 2013 | doi:10.1038/nn.3346

Kontakt:
Professor Dr. Dirk Trauner
Department of Chemistry
Tel: +49 (0)89 2180-77800
Fax: +49 (0)89 2180-77972
http://www.cup.uni-muenchen.de/oc/trauner

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie