Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das Ohr zum Gehirn spricht

09.03.2009
Wissenschaftler des DFG Forschungszentrums Molekularphysiologie des Gehirns und des Exzellenzclusters "Mikroskopie im Nanometerbereich" entschlüsseln wichtige Details im Prozess des Hörens.Veröffentlichung in "Nature Neuroscience"

Unser Gehör öffnet uns die Welt der Musik, hilft uns die zwischenmenschliche Kommunikation zu verstehen und warnt uns wie eine "Alarmanlage" vor potentiellen Gefahren. Weltweit beschäftigen sich daher Hörforscher mit der Frage, wie wir Töne und Geräusche empfangen und mit Hilfe unseres Gehirns verarbeiten.


Schematische Darstellung einer Haarzelle und ihrer Synapsen mit den Hörnervenfasern (rechts). Haarzellen die verschiedene Tonfrequenzen bevorzugt verarbeiten unterscheiden sich in der Zahl der Synapsen: Haarzellen im Bereich des besten Hörens verfügen über die meisten Synapsen. Links ist exemplarisch eine mit STED Mikroskopie mit hoher 3D Auflösung (~150 nm) abgebildete Synapse in verschiedenen Ansichten gezeigt (rot: präsynaptisches Band der Haarzelle, grün: postsynaptische Botenstoffrezeptoren).
Foto: Prof. Moser/CMPB

Wissenschaftler am Göttinger DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) konnten jetzt zeigen, dass der Bereich des "besten Hörens" im Innenohr besonders intensiv vom Gehirn ausgelesen wird. Außerdem liefern sie wichtige neue Einblicke in die Struktur und Funktion der Synapsen. Diese Kontaktstellen zwischen Haarzellen und dem nachgeschalteten Hörnerv gelten als echter "Knackpunkt" im Hörsystem, weil ausnahmslos alle vom Ohr empfangenen Informationen diese Stellen passieren.

"Wir können nun einzelne Zwischenschritte der Signalübertragung von den inneren Haarzellen im Innenohr zum Hörnerv viel besser verstehen" sagt Prof. Dr. Tobias Moser, Leiter des Innenohr-Labors der Abteilung für Hals-Nasen-Ohrenheilkunde an der Universitätsmedizin Göttingen. Die Ergebnisse aus der Grundlagenforschung wurden am 8. März 2009 in der Online-Ausgabe der renommierten Fachzeitschrift "Nature Neuroscience" veröffentlicht. http://dx.doi.org/10.1038/nn.2293.

Originalveröffentlichung:
Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of Synapse Number, Structure and Function in the Cochlea. Nature Neuroscience (online) 08 March 2009, http://dx.doi.org/10.1038/nn.2293.
Aufbau des Gehörs - vom Geräusch zum Nervensignal
Auf seinem Weg zum Innenohr passiert der Schall das äußere Ohr, trifft dann auf das Trommelfell und bringt Hammer, Amboss und Steigbügel zum Vibrieren. Der Steigbügel versetzt dann die Flüssigkeit und Basilarmembran in der Hörschnecke in Schwingung. Auf dieser feinen Membran reihen sich einige Tausend Haarzellen aneinander. In Abhängigkeit von der Schallfrequenz bewegt sich ein Ort auf der Basilarmembran in bestimmten Maße. Die Haarzellen an dieser Stelle reagieren damit nur auf eine bestimmte Tonhöhe. Die für das Hören unabdingbaren inneren Haarzellen nehmen mit feinen Härchen die Schwingungen wahr, geben dann chemische Botenstoffe ab, woraufhin Hörnervenfaser die Hörinformation ans Gehirn übertragen.
Synapsen "live" in Funktion und ihre Bausteine
Am Beispiel von Mäusen und Wüstenrennmäusen konnten Prof. Moser und sein Team nun unter anderem zeigen, dass innere Haarzellen und Hörnervenfasern im Frequenzbereich mit der höchsten Schallempfindlichkeit über erheblich mehr Synapsen verfügen. Dies entspricht dem Bereich des besten Hörens. In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Zusammenarbeit mit der Gruppe um Dr. Alexander Egner und Prof. Dr. Stefan W. Hell vom Göttinger Max-Planck-Institut für biophysikalische Chemie gelang es, molekulare Bausteine dieser Synapsen mit neuen lichtmikroskopischen Methoden, der STED-Mikroskopie, hochauflösend abzubilden.

Unter dem konfokalen Mikroskop konnten die Forscher einzelne Synapsen auch "live" beobachten. Dabei zeigte sich, dass sich die Synapsen der Haarzellen an verschiedenen Frequenzbereichen im Mittel ähnlich verhalten. In jedem Frequenzbereich und sogar innerhalb einer einzelnen Haarzelle reagieren Synapsen jedoch unterschiedlich stark auf Reizung. Prof. Moser: "Dies könnte erklären, wie von den verschiedenen Hör¬nervenfasern, die mit derselben inneren Haarzelle verbunden sind, sehr leise Geräusche wie das Summen einer Biene wie auch lauter Lärm, den ein Flugzeug beim Starten macht, übertragen werden kann."

Zum DFG Forschungszentrum Molekularphysiologie des Gehirns: Das seit 2002 an der Universitätsmedizin Göttingen angesiedelte DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) hat sich das zentrale Ziel gesetzt, molekulare Prozesse und Interaktionen in Nervenzellen detailliert zu analysieren, um langfristig Therapien für psychiatrische, neurologische und neurodegenerative Erkrankungen zu verbessern und weiterzuentwickeln.

KONTAKT
Universitätsmedizin Göttingen
DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB)
Prof. Dr. Tobias Moser
Abteilung Hals-Nasen-Ohrenheilkunde
Telefon 0551-39-8968, tmoser@gwdg.de

Dr. Susanne Ohrt | DFG
Weitere Informationen:
http://www.cmpb.de
http://www.innerearlab.uni-goettingen.de
http://www.universitaetsmedizin-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften