Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nicolai Siegel erforscht Trypanosomen

25.01.2012
Der tropische Parasit, der beim Menschen die Schlafkrankheit auslöst, steht im Zentrum der Arbeit von Nicolai Siegel.

Der junge Wissenschaftler ist Anfang 2012 aus Paris an die Universität Würzburg gekommen, um hier am Zentrum für Infektionsforschung seine eigene Nachwuchsgruppe aufzubauen.

Nicolai Siegel, 1978 in Heidelberg geboren, hat ab 1999 Biochemie an der Brown University in Providence (USA) studiert. Ein Auslandssemester verbrachte er an der Eidgenössischen Technischen Hochschule ETH in Zürich. Im Anschluss absolvierte er ein PhD-Studium, das mit der deutschen Promotion vergleichbar ist, an der Rockefeller University in New York. Als Postdoc ging Siegel 2009 dann ans Pasteur-Institut nach Paris. Von dort ist er nun ans Zentrum für Infektionsforschung der Uni Würzburg gewechselt.

Als Leiter einer Nachwuchsgruppe erforscht Nicolai Siegel in Würzburg den Parasiten Trypanosoma brucei. Dieser einzellige, wurmartige Organismus ist südlich der Sahara in Afrika verbreitet. Durch den Stich der Tse-Tse-Fliege kann er auf den Menschen übertragen werden und löst dann die Schlafkrankheit aus. Impfstoffe gegen den Erreger gibt es bislang nicht. Die verfügbaren Medikamente haben zum Teil so starke Nebenwirkungen, dass man sie eigentlich niemandem verabreichen sollte. Im Endstadium der Krankheit, wenn der Parasit vom Blut ins Gehirn eingedrungen ist, verfallen die Erkrankten in völlige Apathie; ihr Tod ist dann unausweichlich.

Neue Art der Genregulation vermutet

Die Schlafkrankheit besser behandeln zu können: Das ist ein Grund, warum der Parasit erforscht wird. Der andere Grund: Schon früh in der Evolution hat der Erreger einen Sonderweg eingeschlagen. Darum unterscheidet er sich in vielen Punkten von anderen Lebewesen. Das ist es, was Nicolai Siegel besonders an seinem Forschungsobjekt fasziniert – zumal er bei dem Erreger eine neue Art der Genregulation vermutet.

Normalerweise verläuft die Aktivierung eines Gens so: Zuerst muss die DNA ausgepackt werden – denn im Zellkern ist sie platzsparend verstaut. Sie ist aufgewickelt auf Histon-Proteine, die sich wiederum zu einer kompakten Struktur zusammendrängen. Erst wenn dieses Knäuel ausreichend gelockert ist, wird die DNA zugänglich für Proteine, die das Abschreiben der genetischen Information erledigen.

Markierte Startpunkte auf der DNA fehlen

Das Abschreiben eines Gens beginnt in der Regel an markierten Startpunkten auf der DNA. Bei Trypanosoma allerdings hat man bislang weder solche Punkte noch ihre Markierungen gefunden. Nicolai Siegel geht davon aus, dass es bei dem tropischen Erreger quasi von alleine zum Abschreiben der Gene kommt, wenn sich das Knäuel aus DNA und Histonen ausreichend entwirrt hat. Anders gesagt: Das Ausmaß der DNA-Verpackung entscheidet hier über die Aktivierung eines Gens.

Natürlich aber darf auch die Verpackung und Entpackung der DNA nicht unreguliert bleiben. Bei diesem Prozess spielen Enzyme eine Rolle, die an den vier bekannten Histon-Proteinen gezielte Modifizierungen vornehmen. Als Folge davon lösen oder verfestigen sich die Knäuel. Und woher wissen die Enzyme, an welcher Stelle der DNA sie tätig werden müssen? „Vor Kurzem wurden Hinweise darauf gefunden, dass spezielle ncRNA-Moleküle die Enzyme an die richtigen Stellen lotsen“, sagt Siegel.

Auffällige Verteilung von Histon-Proteinen

Modifikationen an den Histon-Proteinen gibt es auch bei Trypanosomen. Zusätzlich besitzen die Parasiten von jedem der vier Histone eine zusätzliche Variante. Siegel hat nachgewiesen, dass immer zwei bestimmte Histon-Varianten genau dort angereichert sind, wo das Abschreiben eines Gens beginnt, während sich zwei andere Histon-Varianten vermehrt an den Stellen befinden, wo der Abschreibeprozess endet.

Wie wirken die Histone und die ncRNA-Moleküle zusammen? Wie regulieren sie die Verpackung der DNA, so dass Gene aktiviert oder stillgelegt werden? Diese Fragen will Siegel mit seiner Nachwuchsgruppe klären. Im Idealfall liefert diese Grundlagenforschung auch neue Erkenntnisse, die für die Entwicklung von Impfstoffen oder besseren Medikamenten gegen den Erreger der Schlafkrankheit bedeutsam sind.

Kontakt

Nicolai Siegel, Zentrum für Infektionsforschung der Universität Würzburg,
T (0931) 31-88499, nicolai.siegel@uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de
http://www.imib-wuerzburg.de/research/siegel/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie