Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Stammzellen greifen Glioblastome an

06.07.2010
Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch haben jetzt gezeigt, wie hirneigene Stammzellen und Vorläuferzellen Glioblastome, in Schach halten. Sie zählen zu den häufigsten und bösartigsten Hirntumoren.

Dr. Sridhar Reddy Chirasani, Prof. Helmut Kettenmann und Dr. Rainer Glass (alle MDC) und Dr. Michael Synowitz von der Charité – Universitätsmedizin Berlin, haben jetzt in der Zellkultur und in Mäusen zeigen können, wie dieser von ihnen vor einiger Zeit entdeckte körpereigene Schutzmechanismus funktioniert (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastome sind Hirntumoren, die meist im fortgeschrittenen Alter Mitte Fünfzig, Anfang Sechzig auftreten. Die Ursachen für ihre Entstehung sind bisher nicht bekannt. Die Forschung geht davon aus, dass fehlgesteuerte neuronale Stamm-/Vorläuferzellen zu Krebszellen mutieren und Glioblastome bilden können.

Vor einigen Jahren jedoch konnten die MDC-Forscher zusammen mit Forschern der Charité zeigen, dass normale Stamm-/Vorläuferzellen des Gehirns den Tumor angreifen. Offenbar lockt der Tumor selbst diese Stammzellen aus den Keimzentren (Stammzellnischen) des Gehirns über weite Strecken an. Weshalb, ist unklar. Auch wissen die Forscher bisher nicht, welche Substanz die Stammzellen zu dem Tumor lockt. Jetzt fanden sie heraus, wie die Stammzellen den Tumor unter Kontrolle halten.

Stammzellprotein schaltet Signal in Glioblastomzellen an
Die Wissenschaftler konnten jetzt nachweisen, dass die neuronalen Stammzellen und die neuronalen Vorläuferzellen ein Protein ausschütten, das zu der Familie der BMP-Proteine (bone morphogenetic protein) gehört. Dieses Protein verdankt seinen Namen seiner zuerst entdeckten Fähigkeit, die Bildung von Knochen- und Knorpelgewebe auszulösen. Es ist aber im gesamten Organismus aktiv, auch im Gehirn.

In der Umgebung von Glioblastomzellen schütten die neuronalen Stammzellen im Gehirn BMP-7 aus. Das Protein beeinflusst eine kleine Population von Krebszellen, die sogenannten Tumorstammzellen. Die Forschung geht inzwischen davon aus, dass diese Tumorstammzellen die eigentliche Ursache dafür sind, dass sich eine Krebsgeschwulst im Gehirn immer wieder erneuern kann. Eine kleine Menge dieser Zellen reicht aus, dass sich auch nach einer Operation wieder neue Tumore bilden. BMP-7 schaltet in den Tumorstammzellen einen Signalweg an, der sie in einen differenzierten Zustand versetzt. Das heißt, sie sind keine Tumorstammzellen mehr.

Die Aktivität der Stammzellen im Gehirn und somit der körpereigene Schutzmechanismus gegen Glioblastome nimmt aber mit zunehmendem Alter ab. Das könnte erklären, weshalb diese Tumore beim Menschen erst in höheren Lebensjahren auftreten, nicht aber bei Kindern und Jugendlichen.

Ziel – Tumorstammzellen zu zerstören
Die Entdeckung der Tumorstammzellen hat auch zu neuen Konzepten in der Therapie von Glioblastomen geführt. Die „normalen Krebszellen“ können mit Hilfe herkömmlicher Therapien (Operation, Bestrahlung, Chemotherapie) zerstört werden, was bei Tumorstammzellen kaum gelingt. Ziel ist es daher, Therapiekonzepte zu entwickeln, die diese Tumorstammzellen zerstören. Die Erkenntnisse aus den Mausexperimenten der Forscher in Berlin könnten einen neuen Weg aufzeigen, Tumorstammzellen in harmlosere Zellen umzuprogrammieren, die mit einer Therapie zerstört werden können.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau