Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Stammzellen greifen Glioblastome an

06.07.2010
Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch haben jetzt gezeigt, wie hirneigene Stammzellen und Vorläuferzellen Glioblastome, in Schach halten. Sie zählen zu den häufigsten und bösartigsten Hirntumoren.

Dr. Sridhar Reddy Chirasani, Prof. Helmut Kettenmann und Dr. Rainer Glass (alle MDC) und Dr. Michael Synowitz von der Charité – Universitätsmedizin Berlin, haben jetzt in der Zellkultur und in Mäusen zeigen können, wie dieser von ihnen vor einiger Zeit entdeckte körpereigene Schutzmechanismus funktioniert (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastome sind Hirntumoren, die meist im fortgeschrittenen Alter Mitte Fünfzig, Anfang Sechzig auftreten. Die Ursachen für ihre Entstehung sind bisher nicht bekannt. Die Forschung geht davon aus, dass fehlgesteuerte neuronale Stamm-/Vorläuferzellen zu Krebszellen mutieren und Glioblastome bilden können.

Vor einigen Jahren jedoch konnten die MDC-Forscher zusammen mit Forschern der Charité zeigen, dass normale Stamm-/Vorläuferzellen des Gehirns den Tumor angreifen. Offenbar lockt der Tumor selbst diese Stammzellen aus den Keimzentren (Stammzellnischen) des Gehirns über weite Strecken an. Weshalb, ist unklar. Auch wissen die Forscher bisher nicht, welche Substanz die Stammzellen zu dem Tumor lockt. Jetzt fanden sie heraus, wie die Stammzellen den Tumor unter Kontrolle halten.

Stammzellprotein schaltet Signal in Glioblastomzellen an
Die Wissenschaftler konnten jetzt nachweisen, dass die neuronalen Stammzellen und die neuronalen Vorläuferzellen ein Protein ausschütten, das zu der Familie der BMP-Proteine (bone morphogenetic protein) gehört. Dieses Protein verdankt seinen Namen seiner zuerst entdeckten Fähigkeit, die Bildung von Knochen- und Knorpelgewebe auszulösen. Es ist aber im gesamten Organismus aktiv, auch im Gehirn.

In der Umgebung von Glioblastomzellen schütten die neuronalen Stammzellen im Gehirn BMP-7 aus. Das Protein beeinflusst eine kleine Population von Krebszellen, die sogenannten Tumorstammzellen. Die Forschung geht inzwischen davon aus, dass diese Tumorstammzellen die eigentliche Ursache dafür sind, dass sich eine Krebsgeschwulst im Gehirn immer wieder erneuern kann. Eine kleine Menge dieser Zellen reicht aus, dass sich auch nach einer Operation wieder neue Tumore bilden. BMP-7 schaltet in den Tumorstammzellen einen Signalweg an, der sie in einen differenzierten Zustand versetzt. Das heißt, sie sind keine Tumorstammzellen mehr.

Die Aktivität der Stammzellen im Gehirn und somit der körpereigene Schutzmechanismus gegen Glioblastome nimmt aber mit zunehmendem Alter ab. Das könnte erklären, weshalb diese Tumore beim Menschen erst in höheren Lebensjahren auftreten, nicht aber bei Kindern und Jugendlichen.

Ziel – Tumorstammzellen zu zerstören
Die Entdeckung der Tumorstammzellen hat auch zu neuen Konzepten in der Therapie von Glioblastomen geführt. Die „normalen Krebszellen“ können mit Hilfe herkömmlicher Therapien (Operation, Bestrahlung, Chemotherapie) zerstört werden, was bei Tumorstammzellen kaum gelingt. Ziel ist es daher, Therapiekonzepte zu entwickeln, die diese Tumorstammzellen zerstören. Die Erkenntnisse aus den Mausexperimenten der Forscher in Berlin könnten einen neuen Weg aufzeigen, Tumorstammzellen in harmlosere Zellen umzuprogrammieren, die mit einer Therapie zerstört werden können.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie