Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Stammzellen greifen Glioblastome an

06.07.2010
Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch haben jetzt gezeigt, wie hirneigene Stammzellen und Vorläuferzellen Glioblastome, in Schach halten. Sie zählen zu den häufigsten und bösartigsten Hirntumoren.

Dr. Sridhar Reddy Chirasani, Prof. Helmut Kettenmann und Dr. Rainer Glass (alle MDC) und Dr. Michael Synowitz von der Charité – Universitätsmedizin Berlin, haben jetzt in der Zellkultur und in Mäusen zeigen können, wie dieser von ihnen vor einiger Zeit entdeckte körpereigene Schutzmechanismus funktioniert (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastome sind Hirntumoren, die meist im fortgeschrittenen Alter Mitte Fünfzig, Anfang Sechzig auftreten. Die Ursachen für ihre Entstehung sind bisher nicht bekannt. Die Forschung geht davon aus, dass fehlgesteuerte neuronale Stamm-/Vorläuferzellen zu Krebszellen mutieren und Glioblastome bilden können.

Vor einigen Jahren jedoch konnten die MDC-Forscher zusammen mit Forschern der Charité zeigen, dass normale Stamm-/Vorläuferzellen des Gehirns den Tumor angreifen. Offenbar lockt der Tumor selbst diese Stammzellen aus den Keimzentren (Stammzellnischen) des Gehirns über weite Strecken an. Weshalb, ist unklar. Auch wissen die Forscher bisher nicht, welche Substanz die Stammzellen zu dem Tumor lockt. Jetzt fanden sie heraus, wie die Stammzellen den Tumor unter Kontrolle halten.

Stammzellprotein schaltet Signal in Glioblastomzellen an
Die Wissenschaftler konnten jetzt nachweisen, dass die neuronalen Stammzellen und die neuronalen Vorläuferzellen ein Protein ausschütten, das zu der Familie der BMP-Proteine (bone morphogenetic protein) gehört. Dieses Protein verdankt seinen Namen seiner zuerst entdeckten Fähigkeit, die Bildung von Knochen- und Knorpelgewebe auszulösen. Es ist aber im gesamten Organismus aktiv, auch im Gehirn.

In der Umgebung von Glioblastomzellen schütten die neuronalen Stammzellen im Gehirn BMP-7 aus. Das Protein beeinflusst eine kleine Population von Krebszellen, die sogenannten Tumorstammzellen. Die Forschung geht inzwischen davon aus, dass diese Tumorstammzellen die eigentliche Ursache dafür sind, dass sich eine Krebsgeschwulst im Gehirn immer wieder erneuern kann. Eine kleine Menge dieser Zellen reicht aus, dass sich auch nach einer Operation wieder neue Tumore bilden. BMP-7 schaltet in den Tumorstammzellen einen Signalweg an, der sie in einen differenzierten Zustand versetzt. Das heißt, sie sind keine Tumorstammzellen mehr.

Die Aktivität der Stammzellen im Gehirn und somit der körpereigene Schutzmechanismus gegen Glioblastome nimmt aber mit zunehmendem Alter ab. Das könnte erklären, weshalb diese Tumore beim Menschen erst in höheren Lebensjahren auftreten, nicht aber bei Kindern und Jugendlichen.

Ziel – Tumorstammzellen zu zerstören
Die Entdeckung der Tumorstammzellen hat auch zu neuen Konzepten in der Therapie von Glioblastomen geführt. Die „normalen Krebszellen“ können mit Hilfe herkömmlicher Therapien (Operation, Bestrahlung, Chemotherapie) zerstört werden, was bei Tumorstammzellen kaum gelingt. Ziel ist es daher, Therapiekonzepte zu entwickeln, die diese Tumorstammzellen zerstören. Die Erkenntnisse aus den Mausexperimenten der Forscher in Berlin könnten einen neuen Weg aufzeigen, Tumorstammzellen in harmlosere Zellen umzuprogrammieren, die mit einer Therapie zerstört werden können.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie