Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Stammzellen greifen Glioblastome an

06.07.2010
Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch haben jetzt gezeigt, wie hirneigene Stammzellen und Vorläuferzellen Glioblastome, in Schach halten. Sie zählen zu den häufigsten und bösartigsten Hirntumoren.

Dr. Sridhar Reddy Chirasani, Prof. Helmut Kettenmann und Dr. Rainer Glass (alle MDC) und Dr. Michael Synowitz von der Charité – Universitätsmedizin Berlin, haben jetzt in der Zellkultur und in Mäusen zeigen können, wie dieser von ihnen vor einiger Zeit entdeckte körpereigene Schutzmechanismus funktioniert (Brain, July 6, 2010, doi:10.1093/brain/awq128)*.

Glioblastome sind Hirntumoren, die meist im fortgeschrittenen Alter Mitte Fünfzig, Anfang Sechzig auftreten. Die Ursachen für ihre Entstehung sind bisher nicht bekannt. Die Forschung geht davon aus, dass fehlgesteuerte neuronale Stamm-/Vorläuferzellen zu Krebszellen mutieren und Glioblastome bilden können.

Vor einigen Jahren jedoch konnten die MDC-Forscher zusammen mit Forschern der Charité zeigen, dass normale Stamm-/Vorläuferzellen des Gehirns den Tumor angreifen. Offenbar lockt der Tumor selbst diese Stammzellen aus den Keimzentren (Stammzellnischen) des Gehirns über weite Strecken an. Weshalb, ist unklar. Auch wissen die Forscher bisher nicht, welche Substanz die Stammzellen zu dem Tumor lockt. Jetzt fanden sie heraus, wie die Stammzellen den Tumor unter Kontrolle halten.

Stammzellprotein schaltet Signal in Glioblastomzellen an
Die Wissenschaftler konnten jetzt nachweisen, dass die neuronalen Stammzellen und die neuronalen Vorläuferzellen ein Protein ausschütten, das zu der Familie der BMP-Proteine (bone morphogenetic protein) gehört. Dieses Protein verdankt seinen Namen seiner zuerst entdeckten Fähigkeit, die Bildung von Knochen- und Knorpelgewebe auszulösen. Es ist aber im gesamten Organismus aktiv, auch im Gehirn.

In der Umgebung von Glioblastomzellen schütten die neuronalen Stammzellen im Gehirn BMP-7 aus. Das Protein beeinflusst eine kleine Population von Krebszellen, die sogenannten Tumorstammzellen. Die Forschung geht inzwischen davon aus, dass diese Tumorstammzellen die eigentliche Ursache dafür sind, dass sich eine Krebsgeschwulst im Gehirn immer wieder erneuern kann. Eine kleine Menge dieser Zellen reicht aus, dass sich auch nach einer Operation wieder neue Tumore bilden. BMP-7 schaltet in den Tumorstammzellen einen Signalweg an, der sie in einen differenzierten Zustand versetzt. Das heißt, sie sind keine Tumorstammzellen mehr.

Die Aktivität der Stammzellen im Gehirn und somit der körpereigene Schutzmechanismus gegen Glioblastome nimmt aber mit zunehmendem Alter ab. Das könnte erklären, weshalb diese Tumore beim Menschen erst in höheren Lebensjahren auftreten, nicht aber bei Kindern und Jugendlichen.

Ziel – Tumorstammzellen zu zerstören
Die Entdeckung der Tumorstammzellen hat auch zu neuen Konzepten in der Therapie von Glioblastomen geführt. Die „normalen Krebszellen“ können mit Hilfe herkömmlicher Therapien (Operation, Bestrahlung, Chemotherapie) zerstört werden, was bei Tumorstammzellen kaum gelingt. Ziel ist es daher, Therapiekonzepte zu entwickeln, die diese Tumorstammzellen zerstören. Die Erkenntnisse aus den Mausexperimenten der Forscher in Berlin könnten einen neuen Weg aufzeigen, Tumorstammzellen in harmlosere Zellen umzuprogrammieren, die mit einer Therapie zerstört werden können.
* Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells
Sridhar Reddy Chirasani,1 Alexander Sternjak,2 Peter Wend,3 Stefan Momma,4 Benito Campos,5 Ilaria M. Herrmann,5 Daniel Graf,6 Thimios Mitsiadis,6 Christel Herold-Mende,5 Daniel Besser,7 Michael Synowitz,1,8 Helmut Kettenmann1,* and Rainer Glass1,*
1 Cellular Neuroscience Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Cellular Immunology Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3 Signal Transduction, Epithelial Differentiation, and Invasion and Metastasis Groups, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4 Restorative Neurology Group, Edinger Institute Frankfurt/M., 60528 Frankfurt/M., Germany
5 Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
6 Institute of Oral Biology, ZZMK, Medical Faculty, University of Zurich, 8032 Zürich, Switzerland
7 Embryonic Stem Cells-Research Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
8 Department of Neurosurgery, Charite´ University Hospital, 13353 Berlin, Germany

*These authors contributed equally to this work.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen