Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzlestück in der Autismus-Forschung

19.09.2014

Spontane Mutationen eines wichtigen Gehirn-Gens sind ein Auslöser dieser Erkrankung

Erkrankungen wie Autismus werden oft durch genetische Mutationen verursacht. Solche Mutationen können die Form von Proteinen verändern und beeinträchtigen dadurch ihre Funktion während der Hirnentwicklung. Die genetische Ursache von Autismus ist jedoch kompliziert, die Erkrankung lässt sich nicht auf nur eine einzige genetische Ursache zurückführen.


Mutationen des TBR1-Gens beeinflussen die Verteilung des TBR1-Proteins (rot) in menschlichen Zellen. Normalerweise kommt es zusammen mit der DNA (blau) im Zellkern vor (links). Mutiertes TBR1-Protein verteilt sich dagegen an verschiedenen Orten innerhalb Zelle.

© MPI f. Psycholinguistik/ Deriziotis

Manche Menschen sind durch vererbte genetische Varianten möglicherweise einem höheren Risiko ausgesetzt. Forschungsergebnisse der vergangenen Jahre haben jedoch gezeigt, dass schwere Fälle von Autismus durch neue Mutationen verursacht werden können, die im Spermium oder in der Eizelle auftreten. Diese genetischen Varianten treten im Kind auf, nicht jedoch in dessen Eltern.

Wissenschaftler haben das Erbgut von tausenden nicht miteinander verwandten Kindern mit schwerem Autismus entschlüsselt und herausgefunden, dass eine Handvoll Gene von unabhängigen neuen Mutationen betroffen sein können. Von besonderem Interesse für die Forscher ist hierbei das sogenannte TBR1-Gen, das bei der Hirnentwicklung eine Schlüsselrolle spielt.

Forschern am Max-Planck-Institut für Psycholinguistik in Nijmegen, Niederlande, zufolge führen Mutationen von TBR1 in hochgradig autistischen Kindern dazu, dass das zugehörige Protein nicht mehr richtig funktioniert. Außerdem habe sie einen direkten Zusammenhang zwischen TBR1 und FOXP2 entdeckt, einem Protein das beim Spracherwerb eine große Rolle spielt.

Bei Autismus handelt es sich um eine Entwicklungsstörung des Gehirns, die zu Schwächen in sozialer Interaktion und Kommunikation führt. Während ein Drittel der Betroffenen keine Lautsprache entwickelt, können andere Autisten fließend sprechen, haben jedoch Schwierigkeiten, wenn es darum geht eine Konversation aufrecht zu erhalten oder nicht wörtlich gemeinte Äußerungen korrekt zu interpretieren. Somit kann die Autismus-Forschung uns helfen zu verstehen, welche neuronalen Vernetzungen im Gehirn die soziale Kommunikation steuern, und wie sie sich entwickeln.

In der Studie haben Forscher der Abteilung für Sprache und Genetik am Max-Planck-Institut in Nijmegen zusammen mit Kollegen der University of Washington untersucht, wie sich Mutationen, die das Risiko von Autismus erhöhen, auf die Funktion des TBR1-Proteins auswirken. Das besondere Interesse der Wissenschaftler galt dabei dem direkten Vergleich zwischen den bei Autismus auftretenden neuen und vererbten Mutationen. Nach Aussage der Wissenschaftler verändern die neuen Mutationen die Verteilung von TBR1 in der Zelle.

„Wir stellten fest, dass die neuen Mutationen weitaus dramatischere Auswirkungen auf die Funktion des TBR1-Proteins haben als die vererbten Mutationen“, sagt Erstautorin Pelagia Deriziotis. „Ein klarer Beweis für den starken Einfluss, den sie auf die frühkindliche Hirnentwicklung haben können.“

Die Funktion des Gehirns hängt vom Zusammenspiel verschiedener Gene und Proteine ab. „Man kann das Gehirn als eine Art soziales Netzwerk für Proteine betrachten“, sagt Deriziotis. „Es gab erste Anzeichen dafür, dass TBR1 mit einem Protein namens FOXP2 ‚befreundet‘ sein könnte.

Das ist faszinierend, denn FOXP2 ist eines der wenigen Gene, die eindeutig mit Sprachstörungen in Verbindung gebracht werden.“ Die Forscher haben nicht nur herausgefunden, dass TBR1 direkt mit FOXP2 interagiert, sondern auch, dass diese Interaktion nicht mehr funktioniert, wenn eine dieser beiden Proteine eine Mutation aufweist.

„Das Aufdecken dieser faszinierenden molekularen Verbindungen bei Erkrankungen, die sich auf Erwerb und Verständnis von Sprache auswirken, ist wirklich spannend“, erklärt Simon Fisher, Direktor am Max-Planck-Institut für Psycholinguistik. „Indem wir aus Erbgut-Analysen gewonnene Daten und im Labor durchgeführte funktionale Analysen zusammenführen, zeichnen wir Schritt für Schritt ein Bild der neurogenetischen Bahnen, die zu grundlegenden menschlichen Eigenschaften beitragen.“

Ansprechpartner 

Dr. Pelagia Deriziotis

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 62263 4580

 

Dr. Sarah Graham

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 64843 5419

 

Originalpublikation

 
Pelagia Deriziotis, Brian J. O’Roak, Sarah A. Graham, Sara B. Estruch, Danai Dimitropoulou, Raphael A. Bernier, Jennifer Gerdts, Jay Shendure, Evan E. Eichler & Simon E. Fisher
De novo TBR1 mutations in sporadic autism disrupt protein functions
Nature Communications, 18 September 2014

Dr. Pelagia Deriziotis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8417096/autismus_tbr1_gen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics