Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzlestück in der Autismus-Forschung

19.09.2014

Spontane Mutationen eines wichtigen Gehirn-Gens sind ein Auslöser dieser Erkrankung

Erkrankungen wie Autismus werden oft durch genetische Mutationen verursacht. Solche Mutationen können die Form von Proteinen verändern und beeinträchtigen dadurch ihre Funktion während der Hirnentwicklung. Die genetische Ursache von Autismus ist jedoch kompliziert, die Erkrankung lässt sich nicht auf nur eine einzige genetische Ursache zurückführen.


Mutationen des TBR1-Gens beeinflussen die Verteilung des TBR1-Proteins (rot) in menschlichen Zellen. Normalerweise kommt es zusammen mit der DNA (blau) im Zellkern vor (links). Mutiertes TBR1-Protein verteilt sich dagegen an verschiedenen Orten innerhalb Zelle.

© MPI f. Psycholinguistik/ Deriziotis

Manche Menschen sind durch vererbte genetische Varianten möglicherweise einem höheren Risiko ausgesetzt. Forschungsergebnisse der vergangenen Jahre haben jedoch gezeigt, dass schwere Fälle von Autismus durch neue Mutationen verursacht werden können, die im Spermium oder in der Eizelle auftreten. Diese genetischen Varianten treten im Kind auf, nicht jedoch in dessen Eltern.

Wissenschaftler haben das Erbgut von tausenden nicht miteinander verwandten Kindern mit schwerem Autismus entschlüsselt und herausgefunden, dass eine Handvoll Gene von unabhängigen neuen Mutationen betroffen sein können. Von besonderem Interesse für die Forscher ist hierbei das sogenannte TBR1-Gen, das bei der Hirnentwicklung eine Schlüsselrolle spielt.

Forschern am Max-Planck-Institut für Psycholinguistik in Nijmegen, Niederlande, zufolge führen Mutationen von TBR1 in hochgradig autistischen Kindern dazu, dass das zugehörige Protein nicht mehr richtig funktioniert. Außerdem habe sie einen direkten Zusammenhang zwischen TBR1 und FOXP2 entdeckt, einem Protein das beim Spracherwerb eine große Rolle spielt.

Bei Autismus handelt es sich um eine Entwicklungsstörung des Gehirns, die zu Schwächen in sozialer Interaktion und Kommunikation führt. Während ein Drittel der Betroffenen keine Lautsprache entwickelt, können andere Autisten fließend sprechen, haben jedoch Schwierigkeiten, wenn es darum geht eine Konversation aufrecht zu erhalten oder nicht wörtlich gemeinte Äußerungen korrekt zu interpretieren. Somit kann die Autismus-Forschung uns helfen zu verstehen, welche neuronalen Vernetzungen im Gehirn die soziale Kommunikation steuern, und wie sie sich entwickeln.

In der Studie haben Forscher der Abteilung für Sprache und Genetik am Max-Planck-Institut in Nijmegen zusammen mit Kollegen der University of Washington untersucht, wie sich Mutationen, die das Risiko von Autismus erhöhen, auf die Funktion des TBR1-Proteins auswirken. Das besondere Interesse der Wissenschaftler galt dabei dem direkten Vergleich zwischen den bei Autismus auftretenden neuen und vererbten Mutationen. Nach Aussage der Wissenschaftler verändern die neuen Mutationen die Verteilung von TBR1 in der Zelle.

„Wir stellten fest, dass die neuen Mutationen weitaus dramatischere Auswirkungen auf die Funktion des TBR1-Proteins haben als die vererbten Mutationen“, sagt Erstautorin Pelagia Deriziotis. „Ein klarer Beweis für den starken Einfluss, den sie auf die frühkindliche Hirnentwicklung haben können.“

Die Funktion des Gehirns hängt vom Zusammenspiel verschiedener Gene und Proteine ab. „Man kann das Gehirn als eine Art soziales Netzwerk für Proteine betrachten“, sagt Deriziotis. „Es gab erste Anzeichen dafür, dass TBR1 mit einem Protein namens FOXP2 ‚befreundet‘ sein könnte.

Das ist faszinierend, denn FOXP2 ist eines der wenigen Gene, die eindeutig mit Sprachstörungen in Verbindung gebracht werden.“ Die Forscher haben nicht nur herausgefunden, dass TBR1 direkt mit FOXP2 interagiert, sondern auch, dass diese Interaktion nicht mehr funktioniert, wenn eine dieser beiden Proteine eine Mutation aufweist.

„Das Aufdecken dieser faszinierenden molekularen Verbindungen bei Erkrankungen, die sich auf Erwerb und Verständnis von Sprache auswirken, ist wirklich spannend“, erklärt Simon Fisher, Direktor am Max-Planck-Institut für Psycholinguistik. „Indem wir aus Erbgut-Analysen gewonnene Daten und im Labor durchgeführte funktionale Analysen zusammenführen, zeichnen wir Schritt für Schritt ein Bild der neurogenetischen Bahnen, die zu grundlegenden menschlichen Eigenschaften beitragen.“

Ansprechpartner 

Dr. Pelagia Deriziotis

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 62263 4580

 

Dr. Sarah Graham

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 64843 5419

 

Originalpublikation

 
Pelagia Deriziotis, Brian J. O’Roak, Sarah A. Graham, Sara B. Estruch, Danai Dimitropoulou, Raphael A. Bernier, Jennifer Gerdts, Jay Shendure, Evan E. Eichler & Simon E. Fisher
De novo TBR1 mutations in sporadic autism disrupt protein functions
Nature Communications, 18 September 2014

Dr. Pelagia Deriziotis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8417096/autismus_tbr1_gen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie