Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzlestück in der Autismus-Forschung

19.09.2014

Spontane Mutationen eines wichtigen Gehirn-Gens sind ein Auslöser dieser Erkrankung

Erkrankungen wie Autismus werden oft durch genetische Mutationen verursacht. Solche Mutationen können die Form von Proteinen verändern und beeinträchtigen dadurch ihre Funktion während der Hirnentwicklung. Die genetische Ursache von Autismus ist jedoch kompliziert, die Erkrankung lässt sich nicht auf nur eine einzige genetische Ursache zurückführen.


Mutationen des TBR1-Gens beeinflussen die Verteilung des TBR1-Proteins (rot) in menschlichen Zellen. Normalerweise kommt es zusammen mit der DNA (blau) im Zellkern vor (links). Mutiertes TBR1-Protein verteilt sich dagegen an verschiedenen Orten innerhalb Zelle.

© MPI f. Psycholinguistik/ Deriziotis

Manche Menschen sind durch vererbte genetische Varianten möglicherweise einem höheren Risiko ausgesetzt. Forschungsergebnisse der vergangenen Jahre haben jedoch gezeigt, dass schwere Fälle von Autismus durch neue Mutationen verursacht werden können, die im Spermium oder in der Eizelle auftreten. Diese genetischen Varianten treten im Kind auf, nicht jedoch in dessen Eltern.

Wissenschaftler haben das Erbgut von tausenden nicht miteinander verwandten Kindern mit schwerem Autismus entschlüsselt und herausgefunden, dass eine Handvoll Gene von unabhängigen neuen Mutationen betroffen sein können. Von besonderem Interesse für die Forscher ist hierbei das sogenannte TBR1-Gen, das bei der Hirnentwicklung eine Schlüsselrolle spielt.

Forschern am Max-Planck-Institut für Psycholinguistik in Nijmegen, Niederlande, zufolge führen Mutationen von TBR1 in hochgradig autistischen Kindern dazu, dass das zugehörige Protein nicht mehr richtig funktioniert. Außerdem habe sie einen direkten Zusammenhang zwischen TBR1 und FOXP2 entdeckt, einem Protein das beim Spracherwerb eine große Rolle spielt.

Bei Autismus handelt es sich um eine Entwicklungsstörung des Gehirns, die zu Schwächen in sozialer Interaktion und Kommunikation führt. Während ein Drittel der Betroffenen keine Lautsprache entwickelt, können andere Autisten fließend sprechen, haben jedoch Schwierigkeiten, wenn es darum geht eine Konversation aufrecht zu erhalten oder nicht wörtlich gemeinte Äußerungen korrekt zu interpretieren. Somit kann die Autismus-Forschung uns helfen zu verstehen, welche neuronalen Vernetzungen im Gehirn die soziale Kommunikation steuern, und wie sie sich entwickeln.

In der Studie haben Forscher der Abteilung für Sprache und Genetik am Max-Planck-Institut in Nijmegen zusammen mit Kollegen der University of Washington untersucht, wie sich Mutationen, die das Risiko von Autismus erhöhen, auf die Funktion des TBR1-Proteins auswirken. Das besondere Interesse der Wissenschaftler galt dabei dem direkten Vergleich zwischen den bei Autismus auftretenden neuen und vererbten Mutationen. Nach Aussage der Wissenschaftler verändern die neuen Mutationen die Verteilung von TBR1 in der Zelle.

„Wir stellten fest, dass die neuen Mutationen weitaus dramatischere Auswirkungen auf die Funktion des TBR1-Proteins haben als die vererbten Mutationen“, sagt Erstautorin Pelagia Deriziotis. „Ein klarer Beweis für den starken Einfluss, den sie auf die frühkindliche Hirnentwicklung haben können.“

Die Funktion des Gehirns hängt vom Zusammenspiel verschiedener Gene und Proteine ab. „Man kann das Gehirn als eine Art soziales Netzwerk für Proteine betrachten“, sagt Deriziotis. „Es gab erste Anzeichen dafür, dass TBR1 mit einem Protein namens FOXP2 ‚befreundet‘ sein könnte.

Das ist faszinierend, denn FOXP2 ist eines der wenigen Gene, die eindeutig mit Sprachstörungen in Verbindung gebracht werden.“ Die Forscher haben nicht nur herausgefunden, dass TBR1 direkt mit FOXP2 interagiert, sondern auch, dass diese Interaktion nicht mehr funktioniert, wenn eine dieser beiden Proteine eine Mutation aufweist.

„Das Aufdecken dieser faszinierenden molekularen Verbindungen bei Erkrankungen, die sich auf Erwerb und Verständnis von Sprache auswirken, ist wirklich spannend“, erklärt Simon Fisher, Direktor am Max-Planck-Institut für Psycholinguistik. „Indem wir aus Erbgut-Analysen gewonnene Daten und im Labor durchgeführte funktionale Analysen zusammenführen, zeichnen wir Schritt für Schritt ein Bild der neurogenetischen Bahnen, die zu grundlegenden menschlichen Eigenschaften beitragen.“

Ansprechpartner 

Dr. Pelagia Deriziotis

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 62263 4580

 

Dr. Sarah Graham

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 64843 5419

 

Originalpublikation

 
Pelagia Deriziotis, Brian J. O’Roak, Sarah A. Graham, Sara B. Estruch, Danai Dimitropoulou, Raphael A. Bernier, Jennifer Gerdts, Jay Shendure, Evan E. Eichler & Simon E. Fisher
De novo TBR1 mutations in sporadic autism disrupt protein functions
Nature Communications, 18 September 2014

Dr. Pelagia Deriziotis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8417096/autismus_tbr1_gen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie