Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzlestück in der Autismus-Forschung

19.09.2014

Spontane Mutationen eines wichtigen Gehirn-Gens sind ein Auslöser dieser Erkrankung

Erkrankungen wie Autismus werden oft durch genetische Mutationen verursacht. Solche Mutationen können die Form von Proteinen verändern und beeinträchtigen dadurch ihre Funktion während der Hirnentwicklung. Die genetische Ursache von Autismus ist jedoch kompliziert, die Erkrankung lässt sich nicht auf nur eine einzige genetische Ursache zurückführen.


Mutationen des TBR1-Gens beeinflussen die Verteilung des TBR1-Proteins (rot) in menschlichen Zellen. Normalerweise kommt es zusammen mit der DNA (blau) im Zellkern vor (links). Mutiertes TBR1-Protein verteilt sich dagegen an verschiedenen Orten innerhalb Zelle.

© MPI f. Psycholinguistik/ Deriziotis

Manche Menschen sind durch vererbte genetische Varianten möglicherweise einem höheren Risiko ausgesetzt. Forschungsergebnisse der vergangenen Jahre haben jedoch gezeigt, dass schwere Fälle von Autismus durch neue Mutationen verursacht werden können, die im Spermium oder in der Eizelle auftreten. Diese genetischen Varianten treten im Kind auf, nicht jedoch in dessen Eltern.

Wissenschaftler haben das Erbgut von tausenden nicht miteinander verwandten Kindern mit schwerem Autismus entschlüsselt und herausgefunden, dass eine Handvoll Gene von unabhängigen neuen Mutationen betroffen sein können. Von besonderem Interesse für die Forscher ist hierbei das sogenannte TBR1-Gen, das bei der Hirnentwicklung eine Schlüsselrolle spielt.

Forschern am Max-Planck-Institut für Psycholinguistik in Nijmegen, Niederlande, zufolge führen Mutationen von TBR1 in hochgradig autistischen Kindern dazu, dass das zugehörige Protein nicht mehr richtig funktioniert. Außerdem habe sie einen direkten Zusammenhang zwischen TBR1 und FOXP2 entdeckt, einem Protein das beim Spracherwerb eine große Rolle spielt.

Bei Autismus handelt es sich um eine Entwicklungsstörung des Gehirns, die zu Schwächen in sozialer Interaktion und Kommunikation führt. Während ein Drittel der Betroffenen keine Lautsprache entwickelt, können andere Autisten fließend sprechen, haben jedoch Schwierigkeiten, wenn es darum geht eine Konversation aufrecht zu erhalten oder nicht wörtlich gemeinte Äußerungen korrekt zu interpretieren. Somit kann die Autismus-Forschung uns helfen zu verstehen, welche neuronalen Vernetzungen im Gehirn die soziale Kommunikation steuern, und wie sie sich entwickeln.

In der Studie haben Forscher der Abteilung für Sprache und Genetik am Max-Planck-Institut in Nijmegen zusammen mit Kollegen der University of Washington untersucht, wie sich Mutationen, die das Risiko von Autismus erhöhen, auf die Funktion des TBR1-Proteins auswirken. Das besondere Interesse der Wissenschaftler galt dabei dem direkten Vergleich zwischen den bei Autismus auftretenden neuen und vererbten Mutationen. Nach Aussage der Wissenschaftler verändern die neuen Mutationen die Verteilung von TBR1 in der Zelle.

„Wir stellten fest, dass die neuen Mutationen weitaus dramatischere Auswirkungen auf die Funktion des TBR1-Proteins haben als die vererbten Mutationen“, sagt Erstautorin Pelagia Deriziotis. „Ein klarer Beweis für den starken Einfluss, den sie auf die frühkindliche Hirnentwicklung haben können.“

Die Funktion des Gehirns hängt vom Zusammenspiel verschiedener Gene und Proteine ab. „Man kann das Gehirn als eine Art soziales Netzwerk für Proteine betrachten“, sagt Deriziotis. „Es gab erste Anzeichen dafür, dass TBR1 mit einem Protein namens FOXP2 ‚befreundet‘ sein könnte.

Das ist faszinierend, denn FOXP2 ist eines der wenigen Gene, die eindeutig mit Sprachstörungen in Verbindung gebracht werden.“ Die Forscher haben nicht nur herausgefunden, dass TBR1 direkt mit FOXP2 interagiert, sondern auch, dass diese Interaktion nicht mehr funktioniert, wenn eine dieser beiden Proteine eine Mutation aufweist.

„Das Aufdecken dieser faszinierenden molekularen Verbindungen bei Erkrankungen, die sich auf Erwerb und Verständnis von Sprache auswirken, ist wirklich spannend“, erklärt Simon Fisher, Direktor am Max-Planck-Institut für Psycholinguistik. „Indem wir aus Erbgut-Analysen gewonnene Daten und im Labor durchgeführte funktionale Analysen zusammenführen, zeichnen wir Schritt für Schritt ein Bild der neurogenetischen Bahnen, die zu grundlegenden menschlichen Eigenschaften beitragen.“

Ansprechpartner 

Dr. Pelagia Deriziotis

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 62263 4580

 

Dr. Sarah Graham

Max-Planck-Institut für Psycholinguistik, Nijmegen

Telefon: +31 64843 5419

 

Originalpublikation

 
Pelagia Deriziotis, Brian J. O’Roak, Sarah A. Graham, Sara B. Estruch, Danai Dimitropoulou, Raphael A. Bernier, Jennifer Gerdts, Jay Shendure, Evan E. Eichler & Simon E. Fisher
De novo TBR1 mutations in sporadic autism disrupt protein functions
Nature Communications, 18 September 2014

Dr. Pelagia Deriziotis | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8417096/autismus_tbr1_gen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie