Neuer Stoffwechselweg in Pflanzen entdeckt

<br>Das Enzym PEN2, eine Myrosinase (grün markiert), befindet sich in den Peroxisomen der Pflanzenzelle, welche sich am Infektionsort des Pilzes anreichern (rot). Das für die Resistenz gegen den Pilz wirkende Substrat ist 4-Methoxyindol-3-yl-methylglucosinolat (unten im Bild). Max-Planck-Institut für Züchtungsforschung/Pawel Bednarek <br>

Wissenschaftler des Max-Planck-Instituts für Züchtungsforschung in Köln haben zusammen mit Kollegen aus Jena und Madrid einen neuen Mechanismus in Pflanzen entdeckt, der gegen eine Reihe pilzlicher Schaderreger wirkt. Ausgangsstoff dabei sind zuckerhaltige Senföl-Verbindungen (Glucosinolate). Diese sind bereits als Wirkstoffe gegen Insektenfraß bekannt. In der aktuellen Ausgabe von SCIENCE (18. Dezember 2008) berichten die Wissenschaftler nun über die Entschlüsselung eines neuartigen Stoffwechselweges, mit dem Pflanzen aus bestimmten Glucosinolaten mithilfe spezifischer Enzyme aktive Verbindungen gegen mehrere Pilzarten herstellen, darunter Mehltau und Kraut-/Knollenfäule.

Das „Immunsystem“ von Pflanzen hat über Jahrmillionen viele spezifische und selektive Abwehrmechanismen gegen Schädlinge entwickelt. Pflanzen und Krankheitserreger liefern sich dabei eine Art Wettkampf: Hat der Krankheitserreger einen Weg gefunden, die Pflanze anzugreifen, so ist diese gefordert, darauf zu reagieren. Dabei sind verschiedenste Abwehrstrategien entstanden.

Die Immunantworten in Pflanzen werden unter anderem über verschiedene kleine Moleküle vermittelt. Diese Moleküle können Signale darstellen und eine spezifische Reaktion auslösen, oder sie attackieren einen Schädling direkt, indem sie ihn quasi vergiften. Ein typisches Gift gegen Insektenfraß, das in Kreuzblütlern (Raps, Kohlsorten) entwickelt ist, sind die Senfölglycoside (Glucosinolate). Im Kohlgemüse rufen diese Stoffe den typischen Kohl-Geschmack hervor.

Wissenschaftler vom Max-Planck-Institut für Züchtungsforschung um Pawel Bednarek aus der Gruppe von Paul Schulze-Lefert haben nun einen neuen Schutzmechanismus aufgedeckt, der nicht durch die mechanische Zerstörung von Pflanzengewebe durch Insektenfraß, sondern durch mikrobielle Krankheitserreger, wie z. B. Pilze, in lebenden Pflanzenzellen aktiviert wird.

In Experimenten mit verschiedenen Mutanten der Ackerschmalwand (Arabidopsis thaliana), deren Pilzabwehr deutlich abgeschwächt war, haben die Wissenschaftler herausgefunden, dass vor allem Indol-verknüpfte Glucosinolate eine bisher unbekannte Funktion bei der Abwehr parasitärer Pilze übernehmen. „Diese Glucosinolate werden auch ohne mechanische Gewebezerstörung aktiviert. Dazu ist allerdings ein Schlüsselprotein namens PEN2 notwendig“, so Pawel Bednarek. Bei PEN2 handelt es sich um ein Enzym, und zwar eine Myrosinase. Sie entfernt das Zuckermolekül des Indol-Glucosinolats, wodurch dieses aktiviert wird. Am Ende entstehen fungizide Aminverbindungen, die sich an der Zellperipherie am Infektionsort anreichern.

Die Entdeckung dieses bisher unbekannten Stoffwechselweges verspricht neue Konzepte im Pflanzenschutz gegen Pilzerreger.

Media Contact

Barbara Abrell Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer