Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus bei der Virenabwehr entdeckt

28.09.2010
Interferon macht das spezifische Immunsystem gegen Viren mobil

Greift ein Virus unseren Organismus an, reagiert unser Immunsystem schnell und effizient. Es schüttet innerhalb von Stunden den Botenstoff Typ I Interferon aus, der über das Serum in den gesamten Körper gelangt. Er dockt über Rezeptoren an die Oberfläche von Zellen an und aktiviert damit ein anti-Viren-Notprogramm. Erst Tage später – wenn schon gar kein Interferon mehr in der Blutbahn kursiert – übernehmen Virus-spezifische Immunzellen die Abwehr. Diese spezialisierten Zellen sind T- und B-Zellen.

Die Frage, die sich Wissenschaftler am TWINCORE in Hannover gestellt haben: Beeinflusst Interferon, das nach zwei Tagen schon nicht mehr im Blut nachweisbar ist, die spezifischen T-Killerzellen, die erst Tage später ihre Arbeit aufnehmen? Um die Antwort kurz vorweg zu nehmen: Ja, ohne Interferonreaktion bildet das Immunsystem bei bestimmten Erregern kaum spezifische Abwehrzellen aus.

Was auf den ersten Blick sehr theoretisch klingt, stellt auf den zweiten Blick die bestehenden Impfkonzepte auf den Prüfstand, denn bei der Entwicklung von Impfstoffen spielte Interferon bislang kaum eine Rolle.

„Wir haben für unsere Untersuchungen einen veränderten Pockenstamm verwendet, das so genannte ‚Modifizierte Vakziniavirus Ankara’ (MVA)“, erklärt die Wissenschaftlerin Theresa Frenz. Er löst eine starke Interferon-Reaktion aus, hat im Vergleich zum klassischen Vakziniavirus-Impfstoff praktisch keine Nebenwirkungen und kann sich in Menschen und Mäusen nicht vermehren. „Wir konnten zeigen, dass gentechnisch veränderte Mäuse, die kein Interferon wahrnehmen können, kaum auf den MVA-Impfstoff reagieren“, sagt Theresa Frenz. „Interferon wirkt nach einer MVA-Impfung offenbar direkt auf T-Killerzellen und auch auf Dendritische Zellen, die die T-Zellen aktivieren.“ Beides ist nötig, damit das Immunsystem erfolgreich gegen Viren sein kann – und vor allem, damit es sich an diese Viren erinnern kann, um den nächsten Angriff schnell und effektiv zu unterdrücken: Das Prinzip von Impfstoffen.

Zusätzlich haben die Wissenschaftler die Mechanismen studiert, die Interferon in T-Zellen und Dendritischen Zellen auslösen. Das Ergebnis ist verblüffend: Die T-Zellen benötigen kein Interferon, um ihre Erstaktivierung auszulösen – diese Entscheidung übernehmen offenbar die Dentritischen Zellen. Aber ohne Interferon sterben die T-Zellen deutlich schneller ab. „Das ist deswegen so erstaunlich, weil das Interferon im Prinzip schon gar nicht mehr vorhanden ist, wenn die T-Zellen auf eine Infektion reagieren“, betont Professor Ulrich Kalinke, Leiter des Instituts für Experimentelle Infektionsforschung am TWINCORE. „Dennoch hat es Einfluss auf deren Lebensdauer.“ Und die Lebensdauer der T-Zellen kann entscheidend für das Erinnerungsvermögen des Immunsystems – und damit für die Wirkdauer einer Impfung sein. „Die Konsequenz ist: Der Entwicklungsweg für neue Impfstoffe muss damit grundsätzlich überdacht werden und Interferon muss in die Impfstoffforschung einbezogen werden“, sagt Ulrich Kalinke.

Frenz T, Waibler Z, Hofmann J, Hamdorf M, Lantermann M, Reizis B, Tovey5 MG, Aichele P, Sutter G, Kalinke U (2010) Concomitant IFNAR-triggering of T cells and of DC is required to promote maximal MVA-induced T-Cell expansion.

Eur J Immunol 40(10): 269-2777.

Ansprechpartnerin:
Theresa Frenz, theresa.frenz(at)twincore.de
Tel: +49 (0)511-220027-111

Dr. Jo Schilling | idw
Weitere Informationen:
http://www.twincore.de

Weitere Berichte zu: Immunsystem Impfstoff Interferon T-Killerzellen T-Zelle TWINCORE Virenabwehr Virus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics