Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatz zur Behandlung von Leberkrebs

15.02.2010
Tübinger Forscher entwickeln mit Förderung des Bundesministeriums für Bildung und Forschung weltweit erste Impfstoffe für die Immuntherapie

Tübinger Wissenschaftler um Prof. Dr. Hans-Georg Rammensee vom Interfakultären Institut für Zellbiologie (IFIZ), Abteilung Immunologie, der Eberhard Karls Universität entwickeln den weltweit ersten therapeutischen Impfstoff zur Behandlung von Leberkrebs.

Derzeit gibt es nach der chirurgischen Entfernung von Lebertumoren keine erfolgreiche begleitende Therapie, die ein mögliches Wiederauftreten des Krebses verhindert. Chemotherapeutische Ansätze zeigen bisher nur eine enttäuschende Wirkung. In der Zusammenarbeit mit der Universitätsklinik für Allgemeine, Viszeral- und Transplantationschirurgie (Prof. Dr. Alfred Königsrainer), dem Institut für Pathologie (Prof. Dr. Falko Fend) und der Medizinischen Genetik (Prof. Dr. Olaf Riess) verfolgen die Tübinger Forscher nun einen neuen Ansatz. Die Entwicklung eines Impfstoffs gegen Leberkrebs wird vom Bundesministerium für Bildung und Forschung (BMBF) mit mehr als einer Million Euro unterstützt. Der Beginn der klinischen Prüfung, also die Impfung der ersten Patienten, ist frühestens für die zweite Jahreshälfte 2012 vorgesehen.

Krebszellen unterscheiden sich von normalen Zellen durch bestimmte Veränderungen, die zum Beispiel durch Mutationen in der Erbsubstanz hervorgerufen werden. Das Immunsystem kann diese Veränderungen erkennen. Bei den meisten Krebserkrankungen erfolgt jedoch keine oder nur eine unzureichende Immunreaktion des Körpers gegen den Tumor, da sich Krebszellen gegen die körpereigene Immunabwehr mit einer Reihe von Gegenmaßnahmen wehren können. Auch beim Leberkrebs zeigen sich die Veränderungen in kleinen Eiweißmolekülen (Peptiden), die die krebsspezifischen Abweichungen tragen. Dabei sind diese Mutationen bei jedem Patienten individuell verschieden. Bisher galt es als unmöglich, die mutierten Peptide für jeden einzelnen Patienten zu ermitteln und für therapeutische Zwecke einzusetzen. Ziel der Tübinger Forscher ist nun, die Veränderungen jeweils individuell zu identifizieren und als Krebsantigene zu nutzen, um einen tumorspezifischen Impfstoff herzustellen. Für jeden Patienten wird dann eigens eine Zusammenstellung der in seinen Krebszellen veränderten Peptide hergestellt, mit denen er individuell immunisiert wird. Dadurch werden die Krebszellen für das Immunsystem sichtbar und können bekämpft werden.

Neben der patientenindividuellen Immuntherapie soll auch nach mutierten oder anderweitig veränderten Peptiden gesucht werden, die in mehr als nur einem Krebspatienten relevant sind. Mithilfe eines Cocktails aus derartigen veränderten Proteinen ließe sich dann ein bei vielen Patienten anwendbarer Impfstoff gegen Leberkrebs herstellen. Dass dieses Vorgehen im Prinzip bereits funktioniert, zeigt der von immatics biotechnologies hergestellte Impfstoff gegen das Nierenzellkarzinom (Nierenkrebs), der bereits in einer klinischen Studie erprobt wird. Die immatics biotechnologies GmbH ist einer der vier Partner des BMBF-Projektes und ist eine Ausgründung aus der Abteilung für Immunologie.

Kontakt und weitere Informationen:

Prof. Dr. Hans-Georg Rammensee
Eberhard Karls Universität Tübingen
Interfakultäres Institut für Zellbiologie Abteilung Immunologie Auf der Morgenstelle 15, 72076 Tübingen
Tel.: 0 70 71 / 29-8 09 91
E-Mail: hans-georg.rammensee@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise