Springende Gene, die Transposons, vermehren sich als Parasiten im Erbgut. Das kann für einen Organismus ein evolutionärer Vorteil sein oder ihm schaden. Welche Faktoren die Aktivität der Transposons steuern, ist noch umstritten. Vergleiche zwischen Populationen können das beantworten, waren bislang aber durch technische Schwierigkeiten verzerrt. Die Software PoPoolationTE2 des Instituts für Populationsgenetik der Vetmeduni Vienna ermöglicht nun erstmals eine unverfälschte Analyse und bestimmt die Häufigkeit der Transposons. Dies kann auch in der Krebsforschung und Neurologie von Nutzen sein. Vorgestellt wurde die Software in der renommierten Fachzeitschrift Molecular Biology and Evolution.
Das Genom ist kein fixer Code, sondern flexibel und lässt Veränderungen in den Genen zu. Transposons, die sogenannten springenden Gene, legen den Begriff Flexibilität allerdings bei weitem freier aus als „normale“ Gene. Sie vermehren sich im Genom und wählen dabei ihre Position selbst. Transposons können sich auch direkt in ein Gen einbauen und dieses funktionsuntüchtig machen. Sie sind damit ein wichtiges Unterscheidungsmerkmal für die Entwicklung von verschiedenen Organismen.
Auslöser der Transposonaktivität noch unklar
Wie sich die springenden Gene entwickelt haben und was ihre Aktivität beeinflusst, ist allerdings noch umstritten. „Damit man den Einfluss von beispielsweise Klimazonen auf die Aktivität feststellen kann, muss man die Häufigkeit der Transposons zwischen Populationen, also Gruppen von Individuen, vergleichen können“, erklärt Bioinformatiker Robert Kofler vom Institut für Populationsgenetik der Vetmeduni Vienna. Diese konnte jedoch bis jetzt nicht genau bestimmt werden.
Neue Software für günstige Methode
Nachgewiesen werden Transposons mit DNS-Sequenzierung. Der Nachweis ist jedoch nicht einzeln für jedes Mitglied einer Population möglich. „Das würde derzeit sowohl den finanziellen als auch den arbeitstechnischen Rahmen sprengen. Die einzige und viel günstigere Möglichkeit ist es, eine ganze Population in einer Reaktion zu analysieren“, erklärt Letztautor Christian Schlötterer, Leiters des Instituts für Populationsgenetik der Vetmeduni Vienna.
Diese Methode, die Schlötterer am Beispiel der Fruchtfliege etabliert hat, nennt sich Pool-Seq. Sie wird auch beim Nachweis von Transposons routinemäßig angewendet. Bisherige Analyseprogramme konnten in diesem Fall allerdings kein exaktes Ergebnis liefern. Jede Auswertung wurde bislang durch mehrere Einflussfaktoren wie der Sequenziertiefe verzerrt.Kofler entwickelte deshalb die neue Software PoPoolationTE2.
„Wenn man ganze Populationen sequenziert, liefert jede Reaktion ein anderes Ergebnis. Die Anzahl der gemischten Individuen ist zwar immer gleich, aber die Individuen selbst unterscheiden sich voneinander“, erklärt Kofler. Zusätzlich beeinflussten unter anderem technische Unterschiede bei der Probenbearbeitung die bisherige Auswertung. PoPoolationTE2 bleibt von diesen Faktoren unbeeinflusst. Fragen zur Transposonaktivität können so auch für Pool-Seq-Reaktionen exakt beantwortet werden.
Auch für Krebsforschung interessant
„Durch die unverzerrte Bestimmung der Häufigkeit ist es nun möglich, sehr günstig Populationen aus zum Beispiel verschiedenen Klimazonen zu vergleichen. Dann kann festgestellt werden, ob ein Transposon verstärkt in einer Klimazone aktiv ist “, sagt Kofler. Die neue Software hat der Bioinformatiker prinzipiell für Pool-Seq entwickelt. Da diese Methode auch in der medizinischen Forschung und Diagnose angewandt wird, ist das Programm auch für die Krebsforschung oder den Nachweis neurologischer Veränderungen interessant. Denn Transposons treten auch im Hirn auf.
Laborversuche bestätigen Einflussfaktoren
Welche Einflussfaktoren die Transposons beeinflussen, kann im Laborversuch erforscht werden. Letztautor Schlötterer erklärt diese anhand eines Versuchs mit Fruchtfliegen: „Man züchtet pro Population hundert Generationen und setzt sie unterschiedlichen Reizen, wie zum Beispiel unterschiedlichen Klimabedingungen, aus. Bei jeder zehnten Generation sequenziert man und ermittelt, ob ein Reiz die Transposonaktivität beeinflusst hat. Damit kann man die Transposonaktivität sozusagen im Zeitraffer darstellen.“ Bei wenigen Prozent geht man davon aus, dass Transposons erst beginnen, häufiger zu werden. Vermehrt sich ein Transposon in einer bestimmten Population sehr schnell, spricht man von einer Invasion. Wird ein springendes Gen in einer gesamten Population gefunden und in einer zweiten nicht, wurde es positiv selektioniert.
Service:
Der Artikel „PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq“ von Robert Kofler, Daniel Gómez-Sánchez und Christian Schlötterer wurde im Journal Molecular Biology and Evolution veröffentlicht.
DOI: 10.1093/molbev/msw137
http://mbe.oxfordjournals.org/content/early/2016/07/22/molbev.msw137.abstract
Über die Veterinärmedizinische Universität Wien
Die Veterinärmedizinische Universität Wien (Vetmeduni Vienna) ist eine der führenden veterinärmedizinischen, akademischen Bildungs- und Forschungsstätten Europas. Ihr Hauptaugenmerk gilt den Forschungsbereichen Tiergesundheit, Lebensmittelsicherheit, Tierhaltung und Tierschutz sowie den biomedizinischen Grundlagen. Die Vetmeduni Vienna beschäftigt 1.300 MitarbeiterInnen und bildet zurzeit 2.300 Studierende aus. Der Campus in Wien Floridsdorf verfügt über fünf Universitätskliniken und zahlreiche Forschungseinrichtungen. Zwei Forschungsinstitute am Wiener Wilhelminenberg sowie ein Lehr- und Forschungsgut in Niederösterreich gehören ebenfalls zur Vetmeduni Vienna. http://www.vetmeduni.ac.at
Wissenschaftlicher Kontakt:
Dr. Robert Kofler
Institut für Populationsgenetik
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-4333
robert.kofler@vetmeduni.ac.at
Aussender:
Mag.rer.nat. Georg Mair
Wissenschaftskommunikation / Öffentlichkeitsarbeit und Kommunikation
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at
http://www.vetmeduni.ac.at/de/infoservice/presseinformationen/presseinformatione...
Mag.rer.nat. Georg Mair | Veterinärmedizinische Universität Wien
Weitere Berichte zu: > Bioinformatiker > Genom > Klimazonen > Krebsforschung > Molecular Biology > Populationsgenetik > Transposon > Vetmeduni > transposable elements
Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen
Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.
Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
Anzeige
Anzeige
Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0
23.04.2018 | Veranstaltungen
Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?
23.04.2018 | Veranstaltungen
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Physics and Astronomy
On the shape of the 'petal' for the dissipation curve
23.04.2018 | Physics and Astronomy
Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Trade Fair News