Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Membran für die Wasserstoffproduktion: Günstigere und effizientere Herstellung möglich

16.02.2015

Eine neue Membran kann die Produktion von Wasserstoff in Zukunft günstiger und ertragreicher machen. Die alkalische Elektrolyse von Wasser gilt als erfolgversprechende Methode zur Wasserstoffherstellung.

Bislang mangelte es jedoch an effizienten Membranen, die die entstehenden Gase Wasserstoff und Sauerstoff trennen. Einen solchen Gas-Separator hat ein Team der Ruhr-Universität Bochum nun entwickelt. Er übertrifft die bislang verfügbaren Membranen in vielen Eigenschaften.


„MEMBRASENZ“-Team, Ghoncheh Kasiribidhendi, Fabio La Mantia, Jelena Stojadinovic und Robin Stetzka (v.l.n.r.), mit der neu entwickelten Membran und der Siegerurkunde aus dem „KUER Wettbewerb“

RUB, Foto: Edgar Ventosa

Was eine Membran für die alkalische Wasserelektrolyse leisten muss

Für die alkalische Elektrolyse von Wasser werden zwei Elektroden in eine Lauge eingebracht; an einer entsteht Wasserstoff, an der anderen Sauerstoff. Die Elektroden sind durch eine Membran voneinander getrennt. Strom fließt von der einen Elektrode zur anderen; gleichzeitig bewegen sich Ionen durch die Membran, um Konzentrationsunterschiede auszugleichen.

Eine ideale Membran muss zwei Dinge gewährleisten: Sie muss undurchlässig für Gase sein, damit Sauerstoff und Wasserstoff sich nicht vermischen und so ein möglichst reines Produkt entsteht. Gleichzeitig sollte sie gut durchlässig für Ionen sein, um die Ausgleichsströme nicht zu behindern; das senkt den Energiebedarf bei der Wasserstoffherstellung. Die Bochumer Membran vereint die beiden Eigenschaften.

Bochumer Membran übertrifft Asbest und Produkte der Konkurrenz

Früher wurde Asbest als Membran verwendet. „Seit dem Verbot von Asbest als Gas-Separator in der Wasserelektrolyse kämpfen die Hersteller mit der Schwierigkeit, eine hochwertige Alternative zu finden“, sagt Dr. Fabio La Mantia, Leiter der Nachwuchsgruppe „Semiconductors & Energy Conversion“. Andere auf dem Markt verfügbare Membranen bieten entweder eine hohe Ionenleitfähigkeit oder eine gute Gasbarriere, aber nicht beides. Der Schlüssel zum Bochumer Erfolg war die Zusammenarbeit von La Mantia, Experte auf dem Gebiet der Batterieforschung, und Dr. Jelena Stojadinovic, Expertin für Wasserelektrolyse.

„Wir haben Resultate aus der Batterieforschung auf das Gebiet der Wasserelektrolyse übertragen – ein Potenzial, das bislang brach lag“, so La Mantia. „Unsere Gas-Separatoren übertreffen sowohl das gesundheitsgefährdende Asbest als auch die Produkte der Konkurrenz im Hinblick auf Ionenleitfähigkeit, Gasdichte, chemische, mechanische und thermische Widerstandsfähigkeit sowie die Kosteneffizienz“. Die Membran besteht aus einem neuen Kompositmaterial; dessen Zusammensetzung ist ein Betriebsgeheimnis des Bochumer Teams.

Start-up und Gründerpreis

Das Forschungsduo gründete basierend auf ihren Arbeiten das Start-up „MEMBRASENZ“. Im Januar 2015 belegten Stojadinovic und La Mantia damit beim „KUER Wettbewerb“ des NRW-Umweltministeriums den ersten Platz.

Weitere Informationen

Dr. Fabio La Mantia, Nachwuchsgruppe „Semiconductors & Energy Conversion”, Fakultät für Biochemie und Chemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29432, E-Mail: fabio.lamantia@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie