Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu entdeckte Direktverbindung im Gehirn synchronisiert Zentren räumlicher Orientierung

03.04.2012
Zwei Gehirnareale, die als zentrale Schaltstellen für die räumliche Orientierung und das Ortsgedächtnis gelten, sind durch lange Ausläufer hemmender Nervenzellen direkt miteinander verbunden.
Wissenschaftler um Professor Hannah Monyer, Leiterin einer Kooperationsabteilung des Deutschen Krebsforschungszentrums, der Universität und des Universitätsklinikums Heidelberg, publizieren dies in der Zeitschrift „Science“. Die neu entdeckte Direktverbindung trägt vermutlich dazu bei, die beiden Hirnregionen zu synchronisieren und so räumliche Eindrücke zu verarbeiten.

Einen der eindrucksvollsten Belege dafür, wie wichtig der Hippocampus für die räumliche Orientierung ist, lieferten vor einigen Jahren Londoner Taxifahrer. Britische Neurologen wiesen bei ihnen charakteristische Volumenänderungen dieser Hirnstruktur nach, die umso ausgeprägter waren, je länger die Fahrer in ihrem Beruf gearbeitet hatten.
Wie der Hippocampus funktioniert und welche Aufgaben er hat, wurde jedoch nicht an Taxifahrern, sondern an Mäusen erforscht. Aus diesen Untersuchungen wissen Neurowissenschaftler, dass die meisten Signale, die den Hippocampus erreichen sollen, eine besondere Struktur der Hirnrinde passieren müssen, den Entorhinalen Cortex – gewissermaßen das Nadelöhr zum Hippocampus. Die beiden Hirnregionen kommunizieren eng miteinander und sind über viele lange Nervenausläufer direkt miteinander vernetzt. „Allerdings kannte man bisher nur erregende Nervenfasern zwischen den beiden Arealen“, erläutert Professor Hannah Monyer ihre aktuellen Ergebnisse. Die Neurowissenschaftlerin leitet eine Kooperationsabteilung des Deutschen Krebsforschungszentrums, der Universität und des Universitätsklinikums Heidelberg. „Wir konnten nun zeigen, dass darüber hinaus auch hemmende Neurone, die den Neurotransmitter GABA ausschütten, Direktverbindungen zwischen den beiden Strukturen ausbilden und damit zum Zusammenspiel der beiden Gehirnareale beitragen.“

Mit einem neuen Nachweisverfahren konnten die Forscher die einzelnen Nervenverbindungen im Gehirn sichtbar machen und zugleich deren Funktion im Detail studieren: Im Hirngewebe von Mäusen schleusten sie ein leuchtendes lichtempfindliches Protein gezielt in die hemmenden GABA-Neuronen ein. Anhand des Leuchtmarkers ließ sich unter dem Mikroskop der Verlauf der langen Nervenausläufer zwischen den beiden Hirnarealen genau verfolgen. Auch die Zielzellen der neuen Direktverbindungen konnten mit dieser Methode identifiziert werden, größtenteils handelt es sich um so genannte hemmende Interneurone. Dieser Typ von Nervenzellen vernetzt lokal hunderte benachbarter Neuronen und gibt dadurch den Takt in ganzen Hirnarealen vor.

Nun galt es zu prüfen, was ein über die Langstreckenverbindung übertragenes Signal in den nachgeschalteten Interneuronen bewirkt: Mit Laserpulsen aktivierten die Wissenschaftler das eingeschleuste lichtempfindliche Protein, was in einzelnen Langstreckenneuronen gezielt elektrische Entladungen auslöst. Dabei konnten die Forscher messen, dass im selben Moment die Aktivität der Zielzellen gehemmt wird.

Obgleich die hemmenden Langstreckenneurone eine Minderheit innerhalb der Gesamtpopulation der Nervenzellen darstellen, hat ihre Aktivierung einen gewaltigen Effekt. Dies überrascht nicht, da ihre Zielzellen, die Interneurone, wie Dirigenten große Ensembles von Nervenzellen synchronisieren. Bildlich gesprochen handelt es sich bei den neu entdeckten hemmenden Langstreckenneuronen um Supersynchronisatoren der Dirigentenzellen, die ihrerseits die ihnen unterstellten Orchester leiten.
Die Forscher aus Monyers Team sind bereits dabei, ihre an Gewebeschnitten erzielten Ergebnisse auch an lebenden Mäusen zu überprüfen. „Mit jedem Nervenschaltkreis, den wir neu entdecken und verstehen, gewinnen wir ein besseres Gesamtbild davon, wie verschiedene Areale unseres Gehirns orchestriert sind. Dieses koordinierte Zusammenwirken verschiedener Strukturen ist die physiologische Grundlage für Lernen und Gedächtnis“, erläutert Hannah Monyer den Hintergrund ihrer Forschung.

Sarah Melzer*, Magdalena Michael*, Antonio Caputi*, Marina Eliava, Elke C. Fuchs, Miles Whittington und Hannah Monyer: Long-Range-Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex. Science 2012, DOI: 10.1126/science.1217139 (* Erstautoren)

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften