Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu entdeckte Direktverbindung im Gehirn synchronisiert Zentren räumlicher Orientierung

03.04.2012
Zwei Gehirnareale, die als zentrale Schaltstellen für die räumliche Orientierung und das Ortsgedächtnis gelten, sind durch lange Ausläufer hemmender Nervenzellen direkt miteinander verbunden.
Wissenschaftler um Professor Hannah Monyer, Leiterin einer Kooperationsabteilung des Deutschen Krebsforschungszentrums, der Universität und des Universitätsklinikums Heidelberg, publizieren dies in der Zeitschrift „Science“. Die neu entdeckte Direktverbindung trägt vermutlich dazu bei, die beiden Hirnregionen zu synchronisieren und so räumliche Eindrücke zu verarbeiten.

Einen der eindrucksvollsten Belege dafür, wie wichtig der Hippocampus für die räumliche Orientierung ist, lieferten vor einigen Jahren Londoner Taxifahrer. Britische Neurologen wiesen bei ihnen charakteristische Volumenänderungen dieser Hirnstruktur nach, die umso ausgeprägter waren, je länger die Fahrer in ihrem Beruf gearbeitet hatten.
Wie der Hippocampus funktioniert und welche Aufgaben er hat, wurde jedoch nicht an Taxifahrern, sondern an Mäusen erforscht. Aus diesen Untersuchungen wissen Neurowissenschaftler, dass die meisten Signale, die den Hippocampus erreichen sollen, eine besondere Struktur der Hirnrinde passieren müssen, den Entorhinalen Cortex – gewissermaßen das Nadelöhr zum Hippocampus. Die beiden Hirnregionen kommunizieren eng miteinander und sind über viele lange Nervenausläufer direkt miteinander vernetzt. „Allerdings kannte man bisher nur erregende Nervenfasern zwischen den beiden Arealen“, erläutert Professor Hannah Monyer ihre aktuellen Ergebnisse. Die Neurowissenschaftlerin leitet eine Kooperationsabteilung des Deutschen Krebsforschungszentrums, der Universität und des Universitätsklinikums Heidelberg. „Wir konnten nun zeigen, dass darüber hinaus auch hemmende Neurone, die den Neurotransmitter GABA ausschütten, Direktverbindungen zwischen den beiden Strukturen ausbilden und damit zum Zusammenspiel der beiden Gehirnareale beitragen.“

Mit einem neuen Nachweisverfahren konnten die Forscher die einzelnen Nervenverbindungen im Gehirn sichtbar machen und zugleich deren Funktion im Detail studieren: Im Hirngewebe von Mäusen schleusten sie ein leuchtendes lichtempfindliches Protein gezielt in die hemmenden GABA-Neuronen ein. Anhand des Leuchtmarkers ließ sich unter dem Mikroskop der Verlauf der langen Nervenausläufer zwischen den beiden Hirnarealen genau verfolgen. Auch die Zielzellen der neuen Direktverbindungen konnten mit dieser Methode identifiziert werden, größtenteils handelt es sich um so genannte hemmende Interneurone. Dieser Typ von Nervenzellen vernetzt lokal hunderte benachbarter Neuronen und gibt dadurch den Takt in ganzen Hirnarealen vor.

Nun galt es zu prüfen, was ein über die Langstreckenverbindung übertragenes Signal in den nachgeschalteten Interneuronen bewirkt: Mit Laserpulsen aktivierten die Wissenschaftler das eingeschleuste lichtempfindliche Protein, was in einzelnen Langstreckenneuronen gezielt elektrische Entladungen auslöst. Dabei konnten die Forscher messen, dass im selben Moment die Aktivität der Zielzellen gehemmt wird.

Obgleich die hemmenden Langstreckenneurone eine Minderheit innerhalb der Gesamtpopulation der Nervenzellen darstellen, hat ihre Aktivierung einen gewaltigen Effekt. Dies überrascht nicht, da ihre Zielzellen, die Interneurone, wie Dirigenten große Ensembles von Nervenzellen synchronisieren. Bildlich gesprochen handelt es sich bei den neu entdeckten hemmenden Langstreckenneuronen um Supersynchronisatoren der Dirigentenzellen, die ihrerseits die ihnen unterstellten Orchester leiten.
Die Forscher aus Monyers Team sind bereits dabei, ihre an Gewebeschnitten erzielten Ergebnisse auch an lebenden Mäusen zu überprüfen. „Mit jedem Nervenschaltkreis, den wir neu entdecken und verstehen, gewinnen wir ein besseres Gesamtbild davon, wie verschiedene Areale unseres Gehirns orchestriert sind. Dieses koordinierte Zusammenwirken verschiedener Strukturen ist die physiologische Grundlage für Lernen und Gedächtnis“, erläutert Hannah Monyer den Hintergrund ihrer Forschung.

Sarah Melzer*, Magdalena Michael*, Antonio Caputi*, Marina Eliava, Elke C. Fuchs, Miles Whittington und Hannah Monyer: Long-Range-Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex. Science 2012, DOI: 10.1126/science.1217139 (* Erstautoren)

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics