Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen mit Rhythmusgefühl

25.08.2016

Neurowissenschaftler am Deutschen Primatenzentrum zeigen, wie Nervenzellen in Netzwerken miteinander kommunizieren

Denken, Fühlen, Handeln – unser Gehirn ist die Schaltzentrale im Kopf, die all unser Tun steuert. Ein Netzwerk aus etwa 100 Milliarden Nervenzellen die durch rund 100 Billionen Synapsen miteinander verknüpft sind, bildet die Grundlage dafür. Wie dieses neuronale Netzwerk organisiert ist und wie der Informationsfluss zwischen verschiedenen Hirnarealen koordiniert wird, haben Neurowissenschaftler am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung jetzt erstmals auf der Ebene einzelner Nervenzellen untersucht.


Schematische Darstellung der Netzwerkstruktur der Hirnareale AIP, F5 und M1. Graue Flächen: Module, rote, blaue und violette Punkte: Knotenpunkte oder hubs, blaue durchbrochene Linie: rich-club

Abbildung: Benjamin Dann

Durch Studien mit Rhesusaffen haben sie herausgefunden, dass die Nervenzellen in den verschiedenen Hirnarealen, die die Greifbewegungen unserer Hände kontrollieren, stark miteinander kommunizieren und in arealübergreifenden funktionellen Gruppen organisiert sind. Außerdem konnten sie zeigen, dass einige wenige Nervenzellen das Netzwerk steuern, indem sie als zentrale Knotenpunkte (hubs) fungieren und den Informationsfluss innerhalb des Nervenzellverbunds koordinieren.

Diese Knotenpunkt-Nervenzellen kommunizieren zudem sehr stark untereinander (rich-club) und bilden somit ein arealüberspannendes Rückgrat für Kommunikation. Interessanterweise unterscheidet sich die Art der Kommunikation der Knotenpunkt-Nervenzellen vom Rest des Netzwerks. So erfolgt deren Informationsweiterleitung durch rhythmische Aktivität, die untereinander gleichgeschaltet ist.

Dies lässt vermuten, dass größere Gruppen von Nervenzellen sich untereinander rhythmisch synchronisieren, um Bereiche des Gehirns miteinander zu verbinden und bestimmte Aufgaben zu bewältigen (eLife, 2016).

Die Leistungen unseres Gehirns wie Denken, Erinnern, Wahrnehmen und Bewegungssteuerung können nur durch die Interaktion des Nervenzellnetzwerks im Gehirn entstehen. Wie dieses Netzwerk aufgebaut ist, ist Gegenstand zahlreicher Forschungsprojekte. Durch theoretische mathematische Analysen und Hirnuntersuchungen wie Elektroenzephalografie (EEG) oder funktionelle Magnetresonanztomografie (fMRT) ist bereits seit längerem bekannt, dass verschiede Regionen des Gehirns als ein komplexes Netzwerk organisiert sind, welches eine schnelle und fehlerresistente Informationsverarbeitung ermöglicht. Allerdings ist es mit diesen Methoden nicht möglich, die Aktivität einzelner Nervenzellen, der Grundbausteine des Gehirns, zu messen. Dies ist jedoch notwendig, wenn man verstehen will, wie beispielsweise neuronale Krankheiten wie Schizophrenie und Autismus entstehen.

Untersuchungen auf Nervenzellebene

„In unserer Studie wollten wir herausfinden, wie das Netzwerk einzelner Nervenzellen über mehrere Hirnareale organisiert ist“ sagt Benjamin Dann, Doktorand in der Abteilung Neurobiologie am Deutschen Primatenzentrum und Erstautor der Studie. „Außerdem wollten wir wissen, wie genau der Informationsfluss zwischen Nervenzellen verschiedener Hirnareale koordiniert wird.“

Dafür wurden drei Rhesusaffen darauf trainiert, wiederholt eine Greifaufgabe auszuführen. Während der Bewegung wurde die Aktivität ihrer Nervenzellen in drei verschiedenen Hirnarealen, dem anterioren intraparietalen Kortex (AIP), dem prämotorischen Kortex (F5) und dem primären Motorkortex (M1), mit sogenannten Mikroelektrodenarrays gemessen. Die Hirnregionen bilden zusammen ein neuronales Netzwerk, das die Planung und Ausführung von Handgriffen steuert.

Nervenzellen im rich-club feuern rhythmisch

Die Wissenschaftler fanden heraus, dass die Nervenzellen aller drei Hirnareale ein stark verbundenes Netzwerk bilden, das wiederum in funktionellen Untereinheiten (Modulen) organisiert ist. Überraschenderweise entsprechen diese Module nicht genau den drei betrachteten Hirnarealen. 84 Prozent der Module waren nicht auf ein Areal begrenzt, sondern umfassten auch Nervenzellen der anderen beiden Areale. Darüber hinaus konnten sie zeigen, dass es innerhalb des Netzwerkes einzelne Nervenzellen gibt, die eine zentrale Funktion übernehmen.

„Diese Knotenpunkte oder hubs haben unverhältnismäßig mehr Verbindungen im Netzwerk als die übrigen Nervenzellen“, erklärt Benjamin Dann. „Zusätzlich sind sie stark untereinander verbunden und bilden einen sogenannten rich-club auf Zellebene, welcher dazu dienen kann, die Informationsweiterleitung im Netzwerk zu koordinieren.“

Darüber hinaus beobachteten die Wissenschaftler, dass die Nervenzellen im rich-club rhythmisch aktiv sind und auch mit dem Rest des Netzwerks rhythmisch kommunizieren. Die anderen Nervenzellen sind dagegen vorwiegend arrhythmisch aktiv. „Wir konnten damit erstmals zeigen, dass die rhythmische Aktivität in festen Frequenzen ein wichtiges Merkmal der zentralen, den Informationsfluss koordinierenden, hub- und rich-club-Nervenzellen darstellt“, fasst Benjamin Dann seine Ergebnisse zusammen.

„Wir vermuten, dass rhythmische Synchronität von Nervenzellen ein zentraler Mechanismus für schnelle und robuste Kommunikation innerhalb des gesamten Gehirns ist, mit der auch entfernte Gruppen von Neuronen funktionell verbunden werden können, um bestimmte Gedanken oder Handlungen auszuführen“.

Die Studie kann künftig dazu beitragen, neuronale Erkrankungen wie Schizophrenie oder Autismus besser zu verstehen, da diese unter anderem durch Störungen von rhythmischer Synchronität wie auch der Netzwerk-Struktur verursacht werden. Die genaue Kenntnis dieser Prozesse im Gehirn ist wichtig, um neue Therapien entwickeln zu können.

Originalpublikation

Dann, B., Michaels, J., Schaffelhofer, S., Scherberger H. (2016): Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates. eLife, DOI: http://dx.doi.org/10.7554/eLife.15719

Kontakt und Hinweise für Redaktionen

Benjamin Dann
Tel.: +49 551 3851-484
E-Mail: bdann@dpz.eu

Prof. Dr. Hansjörg Scherberger
Tel.: +49 551 3851-494
E-Mail: hscherberger@dpz.eu

Dr. Sylvia Siersleben (Kommunikation)
Tel.: +49 551 3851-163
E-Mail: ssiersleben@dpz.eu


Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem vier Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 88 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu - Homepage Deutsches Primatenzentrum
http://www.dpz.eu/de/startseite/einzelansicht/news/nervenzellen-mit-rhythmusgefu... - Pressemitteilung und weitere Informationen
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3481 - Mediathek mit druckfähigen Bildern

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften