Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Natur als chemische Fabrik

27.05.2009
Nachwachsende Rohstoffe können Erdöl ersetzen. Aus Raps oder Reststoffen wie Stroh, Molke und Krabbenschalen lassen sich mit der industriellen Biotechnologie chemische Produkte herstellen.

Erdöl wird immer teurer, fossile Rohstoffe gehen langsam zur Neige. Die Nutzung nachwachsender Rohstoffe und nachhaltige Produktionsprozesse bieten alternative Lösungen. Besondere Bedeutung kommt der weißen Biotechnologie zu, bei der Chemikalien und chemische Grundstoffe mit biotechnologischen Verfahren hergestellt werden.

Die Prozesse werden vor allem dann nachhaltig und stehen nicht in Konkurrenz zur Nahrungsmittelproduktion, wenn Restbiomasse aus der Forst- und Landwirtschaft oder Reststoffe aus der Lebensmittelindustrie als Substrate für die Mikroorganismen genutzt werden.

Kunststoff und Lacke aus Raps
Bei der Herstellung von Biodiesel aus Rapsöl fällt als Nebenprodukt Rohglyzerin an. Wissenschaftler am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben ein Verfahren entwickelt, mit dem sich Rohglyzerin in 1,3-Propandiol umsetzen lässt - einen chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken.

Bislang wird 1,3-Propandiol chemisch synthetisiert. Es gibt aber auch Mikroorganismen, die Glyzerin zu 1,3-Propandiol umsetzen können. Das Bakterium Clostridium diolis produziert 1,3-Propandiol in vergleichsweise hoher Ausbeute. Allerdings setzte das Bakterium zwar Glyzerin, nicht aber Rohglyzerin um. Der Grund: Der schwarz gefärbte, wie verbrauchtes Motoröl aussehende Reststoff Rohglyzerin enthält aus dem Rapsöl übrig gebliebene Fettsäuren. Diese müssen zunächst abgetrennt werden. "Zudem hemmen sowohl das Substrat Glyzerin als auch das Produkt 1,3-Propandiol bei höheren Konzentrationen das Wachstum der Bakterien", nennt Dr. Wolfgang Krischke vom IGB eine weitere Herausforderung bei der Entwicklung des biotechnologischen Prozesses. "Durch eine kontinuierliche Betriebsführung des Bioreaktors konnten wir dieses Problem weitgehend lösen. Denn bei annäherndem Vollumsatz des Glyzerins entfällt dessen Hemmwirkung. Auf diese Wei-se konnten wir einen stabilen Prozess mit hohen Produktkonzentrationen erzielen."

Aus Rapsöl lässt sich noch ein weiteres chemisches Zwischenprodukt gewinnen - langkettige Dicarbonsäuren. Sie können bei der Herstellung von Polyamiden und Polyestern eingesetzt werden. Bisher lassen sich langkettige Dicarbonsäuren jedoch chemisch nur schwer synthetisieren. Eine Alternative ist die biotechnologische Herstellung. "Im Rapsöl sind Fettsäuren an Glyzerin gebunden. Werden diese abgespalten, können die freien Fettsäuren beispielsweise von verschiedenen Hefen der Gattung Candida zu Dicarbonsäuren umgesetzt werden", erläutert Susanne Zibek vom IGB. Gemeinsam mit Kollegen hat sie einen fermentativen Prozess entwickelt, der mit gentechnisch modifizierten Hefen arbeitet, und bei dem die Spaltung des Rapsöls sowie die Umsetzung der Fettsäuren zu Dicarbonsäuren simultan erfolgt.

Feinchemikalien aus Krabbenschalen
Chitin ist nach Zellulose das am häufigsten vorkommende Biopolymer auf der Erde. Der nachwachsende Rohstoff fällt in der Aquakultur und bei der Verarbeitung von Meeresfrüchten wie Krabben in großen Mengen als Abfall an. Forscher des IGB untersuchen, ob sich Chitin durch den Einsatz von mikrobiellen Chitinasen als nachwachsender Rohstoff für die chemische Industrie erschließen lässt. Chitin kann von vielen Bakterien durch Chitinasen abgebaut werden. Diese Chitinasen spalten das lineare, unlösliche Homopolymer aus beta-1,4-verknüpften N-Acetyl-Glucosamin-Einheiten zu Oligo- oder Monomeren. Ziel ist es, das Chitin zu Monomeren abzubauen, die anschließend hydrothermal zu gut modifizierbaren Grundbausteinen der Polymerchemie wie z. B. Stickstoffheterozyklen umgesetzt werden.
Holz und Stroh nutzbar machen:
Basischemikalien aus Lignocellulose
Lignocellulose, der am häufigsten vorkommende nachwachsende Rohstoff, ist Hauptbestandteil von Reststoffen wie Stroh oder Holz.. Lignocellulosehaltige Materialien können durchaus durch fermentative oder chemische Verfahren wichtige Grundstoffe für die chemische Industrie liefern. Aufgrund ihrer chemischen Struktur sind sie gegenüber einem enzymatischen Angriff sehr beständig. Daher sind eine Reihe neuer Methoden und Methodenkombinationen notwendig, um zu technisch verwertbaren Bausteinen für chemische Folgeprodukte zu gelangen. Das Fraunhofer IGB entwickelt hierfür eine Kombination enzymatisch-fermentativer Prozesse mit unterschiedlichen Aufschlussverfahren, um verschiedene Zucker herzustellen. In weiteren Schritten können daraus neben Basischemikalien wie Acetat auch Biokraftstoffe wie Bioethanol oder Biobutanol gewonnen werden. Damit wollen die Wissenschaftler das Konzept eines integrierten Prozessansatzes vom Rohstoff Lignocellulose bis zur Produktgewinnung im Sinne einer Bioraffinerie umsetzen.
Mikroalgen - nachhaltiger Rohstoff für Wertstoffe und regenerative Energie
Algen sind eine bislang wenig genutzte natürliche Rohstoffquelle, die eine Vielzahl chemischer Grundstoffe mit hohem Wertschöpfungspotenzial für die Pharma- und die Nahrungsmittelindustrie produzieren. Etwa natürliches Astaxanthin, ein roter Farbstoff mit antioxidativen und gesundheitsfördernden Eigenschaften, oder die Omega-3-Fettsäure EPA, die essenziell für den Menschen ist: Ein ernährungsbedingter Mangel an EPA wird in Zusammenhang mit einem erhöhten Risiko für Zivilisationskrankheiten wie Herzinfarkt und Schlaganfall gebracht.

Algen bzw. ihre Produkte dienen auch als Rohstoffe für die industrielle Biotechnologie oder regenerative Energieversorgung. Speicherlipide der Algen etwa können ähnlich wie Rapsöl zur Herstellung von Biotreibstoff genutzt werden. Ein wichtiger Aspekt bei der Algenkultivierung ist die Nachhaltigkeit: Algen brauchen - wie die Pflanzen - nur Kohlendioxid und Licht, Nitrat und Phosphor für ein schnelles Wachstum. Mit der am Fraunhofer IGB entwickelten Reaktorplattform kann sogar das Kohlendioxid aus Verbrennungsprozessen (Rauchgas) direkt als Kohlenstoffquelle für das Algenwachstum eingesetzt werden. Umweltschonender Nebeneffekt: Das von den Algen gebundene CO2 gelangt nicht in die Atmosphäre.

"Die Weiße Biotechnologie nutzt die Natur als chemische Fabrik. Herkömmliche chemische Produktionsprozesse werden durch den Einsatz von Mikroorganismen oder Enzymen ersetzt", erläutert Prof. Thomas Hirth, Leiter des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, den Ansatz.

Dr. Claudia Vorbeck | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.igb.fhg.de/www/presse/jahr/2009/dt/PI_0905_naturfabrik.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten