Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoröhrchen: Zellmembran auf Vorrat

08.03.2011
Osmotische Kräfte an der Bildung von Nanoröhrchen in Zellen beteiligt

Camping-Neulinge wundern sich beim Auffalten eines Zeltes, dass die große Zeltplane in einen fußballgroßen Sack passt. Biologen staunen über Ähnliches: Wenn sich eine Zelle teilt, wächst die Fläche der Zellmembran. Auch wenn im Innern der Zelle Stoffe von einem Organell zum anderen gebracht werden, bilden sich membranumschlossene Transportkügelchen, so genannte Vesikel. Um Membranen schnell zur Verfügung stellen zu können, speichern Zellen in ihrem Innern Membranfläche in Form von Nanoröhrchen, schlauchförmigen Einstülpungen der Zellmembran - ähnlich wie die zusammengefaltete Zeltplane. Forscher des Max-Planck-Institutes für Kolloid- und Grenzflächenforschung in Potsdam haben nun einen Mechanismus entdeckt, wie die Zelle stabile Membran-Nanoröhrchen bildet.


Bildung von Nanoröhrchen in einem Vesikel (rot, Membran) mit zwei Inhaltsstoffen: PEG (dunkel) und Dextran (grün). Nach dem Schrumpfen des Vesikels bilden sich an der Grenzfläche zwischen den beiden Substanzen Nanoröhrchen. (a-c) vertikaler Querschnitt durch das Vesikel. (d) Blick von oben auf die Nanoröhrchen
© MPI für Kolloid- und Grenzflächenforschung

Röhrchenförmige Einstülpungen der Zellmembran finden sich an vielen Stellen einer Zelle: im Golgi-Apparat, einer Art Verschiebebahnhof der Zelle, der Transportvesikel bildet, in den Mitochondrien, den Kraftwerken der Zelle oder im Endoplasmatischen Retikulum, eine Art Kanalnetzwerk innerhalb von Zellen. Die Röhrchen haben Durchmesser von wenigen Nanometern (Millionstel Millimeter) bis hin zu einigen Mikrometern (Tausendstel Millimeter). Je dünner die Röhrchen sind, desto größer ist das Verhältnis zwischen ihrer Oberfläche und ihrem Volumen. Sie sind daher ideal, um Membranfläche auf kleinstem Raum zu speichern.

Forscher nehmen an, dass Motorproteine die Zellmembran unter Energieeinsatz zu Nanoröhrchen zusammenfalten können. „Doch diese Motorproteine sind nicht überall dort in der Zelle vorhanden, wo sich Membran-Nanoröhrchen ausbilden“, sagt Rumiana Dimova vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Mitautorin der Studie. Daher müsse es noch einen weiteren Mechanismus geben, der stabile Nanoröhrchen erzeugt, sagt Dimova.

Eine mögliche Lösung des Rätsels haben die Potsdamer Forscher nun gefunden. „Der Mechanismus erzeugt stabile Nanoröhrchen, ohne dass Kräfte auf die Membran ausgeübt werden müssen. Er kommt somit ohne Motorproteine aus“, erklärt Dimova. Ein Teil des Mechanismus beruht auf einem Phänomen, das in der Welt der Membranen allgegenwärtig ist, der so genannten Osmose. Wenn bestimmte Moleküle außerhalb einer Zelle in einer größeren Konzentration vorliegen als innerhalb der Zelle - sie also eine so genannte hypertone Lösung bilden - dann fließt Wasser aus der Zelle heraus und die Zelle schrumpft.

Genau das haben die Potsdamer Forscher mit einer Modellzelle gemacht. Dabei handelte es sich um ein künstliches Vesikel von der Größe einer Zelle, das eine Mischung von zwei Polymeren, nämlich Polyethylenglykol (PEG) und Dextran, enthielt. „Auch in lebenden Zellen befinden sich Biopolymere in ähnlich hoher Konzentration“, sagt Dimova. „Wir halten das Vesikel daher für ein gutes Zellmodell.“ Das Vesikel haben die Forscher in eine hypertone Lösung überführt. Darin schrumpfte es, weil es Wasser an die hypertone Lösung abgab.

Allerdings tat es das auf ganz andere Weise als ein Badeball, aus dem man die Luft entlässt und der einfach zu einem flachen Pfannkuchen zusammenfällt. Das Herausfließen des Wassers ließ die Konzentration der gelösten Polymere im Vesikel ansteigen. Das wiederum hatte zur Folge, dass die beiden Polymerarten sich weitgehend entmischten. Dadurch bildeten sich zwei getrennte, unterschiedlich große Tropfen in dem Vesikel, sodass es die Form eines Schneemannes annahm, mit einer größeren Kugel, die hauptsächlich PEG und einer kleineren, die überwiegend Dextran enthielt.

Mit einem Fluoreszenzmikroskop konnten die Potsdamer Forscher beobachten, dass sich Membran-Nanoröhrchen im PEG-reichen Teil des Vesikels ausbildeten und sich an die Grenzfläche zwischen den beiden Tropfen anlagerten. Die Wissenschaftler zeigten, dass etwa 15 Prozent der Membranfläche in den Röhrchen gespeichert wurde. Das Auflösungsvermögen des Mikroskops reichte nicht aus, um den Durchmesser der Röhrchen zu bestimmen. Die Forscher konnten ihn aber auf rund 240 Nanometer berechnen.

Die Forscher haben auch ein Erklärungsmodell für die Entstehung und die Stabilität der Nanoröhrchen. Sie beobachteten, dass sich beim Trennen der Polymere Strömungen von Lösungen unterschiedlicher Dichte ergeben. Diese üben Kräfte auf die Membran aus und tragen so zur Ausbildung der Röhrchen bei.

Als nächstes fragten sich die Wissenschaftler, wodurch die Membranröhrchen stabil bleiben. Die theoretische Analyse der beobachteten Membranformen zeigte, dass nur dann stabile Röhrchen entstehen, wenn die beiden Seiten der Membran einen asymmetrischen molekularen Aufbau haben. Diese Asymmetrie wird durch die Wechselwirkung zwischen Membran und Biopolymeren verursacht. Auf der einen Seite befindet sich eine hohe Konzentration von PEG-Molekülen auf der anderen Seite hingegen finden sich keine solchen Moleküle. Weil das PEG mit den Lipid-Molekülen wechselwirkt, aus denen die Membran besteht, hat die Membran das Bestreben, sich nach innen zu krümmen. Durch die Ausbildung der Nanoröhrchen kommt die Zellmembran diesem Streben entgegen. Die Forscher beobachteten, dass die Nanoröhrchen wieder verschwinden, wenn man die Vesikel durch Osmose wieder anschwellen lässt.

„Für natürliche Zellen ist es einfach, eine Asymmetrie zu erzeugen, wie wir sie in unserem Experiment beobachtet haben“, sagt Dimova. Ein durch Osmose herbeigeführtes Schrumpfen sei beispielsweise von roten Blutzellen her bekannt. Die Biophysikerin glaubt daher, dass der neu entdeckte Mechanismus in lebenden Zellen zur Speicherung von Membranfläche genutzt werden könnte. Der Beweis dafür stehe aber noch aus.

Ansprechpartner

Dr. Rumiana Dimova
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9615
Fax: +49 331 567-9612
E-Mail: Rumiana.Dimova@mpikg.mpg.de
Frank Grimm
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Telefon: +49 331 567-9211
E-Mail: frank.grimm@mpikg.mpg.de
Originalveröffentlichung
Yanhong Li, Reinhard Lipowsky, Rumiana Dimova
Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature

PNAS; DOI: 10.1073/pnas.1015892108

Frank Grimm | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/1198046/nanoroehrchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie