Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel als Schmutzfänger

27.05.2009
Am Fraunhofer IGB wurden Nanopartikel hergestellt, die selbst gering konzentrierte Pharmaka aus Abwässern effektiv binden.

Möglich macht dies die NANOCYTES®-Technologie, mit der Nanopartikel ganz selektiv für den verunreinigenden und abzutrennenden Stoff geprägt werden. Das patentierte Verfahren kann ebenso für Wertstoffe eingesetzt werden, die von anderen Stoffen verunreinigt sind. In diesem Fall dient es der Aufreinigung.

Viele gängige Medikamente werden selbst in den biologischen Stufen der Kläranlagen nicht oder nicht effektiv abgebaut. Aus kontaminierten Oberflächengewässern gelangen sie häufig bis in das Grundwasser. Über 100 verschiedene Arzneimittelwirkstoffe und Arzneimittelrückstände wurden bislang, teilweise in Konzentrationen oberhalb ökotoxikologischer Wirkschwellen, im aquatischen Kreislauf nachgewiesen. Ein Abbau dieser Spurenschadstoffe mit physikalisch-chemischen Methoden wie der Ozonolyse oder der Adsorption an Aktivkohle ist kostenintensiv oder es entstehen toxische Abbauprodukte.

Wissenschaftler am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben in einem neuen Ansatz Nanopartikel als selektive Adsorber für zwei weit verbreitete Arzneimittelwirkstoffe, das Schmerzmittel Diclofenac und das bei Durchblutungsstörungen verschriebene Pentoxifyllin, hergestellt. Mit einem patentierten Verfahren prägen die Wissenschaftler um Priv.-Doz. Dr. Günter Tovar einen jeweils ganz spezifischen Abdruck dieser Pharmaka in die Oberfläche kleinster Polymerkügelchen. Dieser Abdruck in den so genannten NanoMIPs (nanoscopic molecular imprinted polymers) bleibt dauerhaft erhalten. "Das zu entfernende Arzneimittel passt nun genau in diesen Abdruck - wie ein Schlüssel ins Schloss", erklärt Günter Tovar. In einem durch das Umweltministerium Baden-Württemberg geförderten Projekt konnten die Wissenschaftler an Modelllösungen zeigen, dass die robusten NanoMIPs selektiv nur "ihren" Stoff adsorbieren und beispielsweise 1 Gramm NanoMIP bis zu 500 µg Pentoxifyllin aufnehmen kann.

Die spezifischen Adsorberkügelchen mit einem durchschnittlichen Durchmesser von nur 200 Nanometer können, in eine Membran eingebunden, zur Adsorption der Schadstoffe über ein Filtrationsverfahren eingesetzt werden. Ebenso ist es möglich, die Nanopartikel mit einem magnetisierbaren Kern auszustatten. Dann ließen sie sich - und mit ihnen die gebundenen Pharmaka - aus zum Beispiel Abwasser einfach mit einem Magnetabscheider abfangen.

Umgekehrt lassen sich auf die gleiche Weise mit spezifisch geprägten Nanopartikeln auch Wertstoffe effektiv aufreinigen. Nach Abtrennung der gewünschten Substanzen über die Kügelchen können diese aus den Prägestellen auf der Oberfläche der NanoMIPs einfach herausgelöst werden.

Dr. Claudia Vorbeck | idw
Weitere Informationen:
http://www.igb.fhg.de/www/presse/jahr/2009/dt/PI_0905_nanomips.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen