Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Design, so genial wie die Natur

07.06.2010
ForscherInnen der Technischen Universität (TU) Wien koordinieren ein groß angelegtes EU-Projekt. Mit der Biologie als Vorbild sind sie auf dem Weg zu einer neuen, bionisch inspirierten Brennstoffzelle.

Jede lebende Zelle in unserem Körper kann es: bedeckt mit einer dünnen Membran, genannt Zellmembran oder Nanomembran, kann sie gezielt gewisse Stoffe herein und andere draußen lassen. Obwohl tausendfach dünner als das menschliche Haar ist diese Nanomembran in Aufbau und Funktion äußerst komplex. Drei Nobelpreise wurden bisher für ein besseres Verständnis dieser Nanomembranen verliehen.

Mikroskopisch kleine Kanäle leiten Wasser, elektrische Ladungen und Nährstoffe hin und her und schaffen dabei im Inneren der Zelle eine ausgewogene Balance. Dabei sind uns viele der Funktionen und Strukturdetails noch immer unbekannt, lediglich der Wasser- und Protonenaustausch ist besser erforscht. „Diese feinsten Kanäle der Zellmembranen mit ihrer Fähigkeit, selektiv Protonen zu leiten, funktionieren genauso wie die vom Menschen geschaffenen Brennstoffzellen“, erklärt Werner Brenner, „nur ist dieser Prozess in der Natur noch deutlich effizienter.“

Brennstoffzellen: Alternative zu Öl

Brennstoffzellen sieht man heute als ernstzunehmende Alternative zu Öl, das bisher die Basis für elektrische Energie und Mobilität ist. Die Ölreserven der Erde leeren sich jedoch rapide mit dem wirtschaftlichen Druck, immer tiefer in den Meeresboden vordringen zu wollen. Auch liefert die Ölverbrennung CO2, Ruß und andere Rückstände. Abfallprodukt der Brennstoffzelle ist lediglich Wasser.

Das EU-Projekt fokussiert auf das Design des Herzstücks jeder Brennstoffzelle, der Membran, die Protonen effizienter leiten soll als dies bisherige Lösungen können. „Erste Ergebnisse machen Mut. Es wird nicht trivial aber machbar. Die Natur schafft diese Strukturen seit Milliarden von Jahren und sie bewähren sich in jedem lebenden Organismus. Unsere Aufgabe ist die Übernahme der Struktur dieser natürlichen Nanokanäle in eine künstliche Nanomembran, selbst nur hundert Nanometer dick.“ erklärt Jovan Matovic.

Ein breites Feld von wissenschaftlichen Ansätzen – von der Festkörperphysik über die Nanotechnologie bis hin zur Chemie – sind für dieses Projekt nötig. Daher ist auch die internationale Kooperation von sechs Universitäten, Forschungsinstitutionen und Unternehmen von großer Bedeutung. Das EU-Projekt wird vom TU Wien Forschungsteam Ass.Prof. Dr. Werner Brenner, Dr. Jovan Matovic und Dr. Nadja Adamovic am Institut für Sensor- und Aktuatorsysteme koordiniert.

Das TU-Forschungsteam ist sich sicher: “Der Output dieses Vorhabens soll von weitreichenderer Bedeutung sein für unsere Gesellschaft sein. Gelingt es, die Nanokanäle exakt nach Plan zu bauen, öffnen sich noch ganz andere Anwendungsfelder wie definierte Medikamentenabgabe, Wasserentsalzung oder auch neuartigen Sensoren.“ erläutert Nadja Adamovic, „Die Grenzen zwischen „künstlich und „natürlich“ werden im Projekt wieder ein Stück weit verschwimmen“.

Links:
http://www.multiplat.net
http://www.ifwt.tuwien.ac.at
Rückfragehinweise:
Technische Universität Wien
Institut für Sensor- und Aktuatorsysteme
Floragasse 7, 1040 Wien
Ass.Prof. Dipl.-Ing. Dr. Werner Brenner
T: +43 (1) 58801 - 366 81
werner.brenner@tuwien.ac.at
Projektass. Dipl.-Ing. Dr. Jovan Matovic
T: +43 (1) 58801 - 766 67
jovan.matovic@tuwien.ac.at
Projektass. Dipl.-Ing. Dr. Nadja Adamovic
T: +43 (1) 58801 - 766 48
nadja.adamovic@tuwien.ac.at
Aussender:
Technische Universität Wien
Büro für Öffentlichkeitsarbeit
Bettina Neunteufl, MAS
T: +43 (1) 58801 - 41025
bettina.neunteufl@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at/pr

Weitere Berichte zu: Brennstoffzelle EU-Projekt Nano-Design Nanokanäle Nanomembran ProTon Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten