Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Container auf Proteinfang

16.02.2017

Winzige Nano-Container aus DNA-Material zu konstruieren, die passgenau jeweils ein ganz bestimmtes Protein binden können - dies gelang jetzt der Nachwuchswissenschaftlerin Dr. Barbara Sacca von der Universität Duisburg-Essen (UDE). „Dies gibt unserer Arbeit einen richtigen Schub“, freut sich die junge Projektleiterin im DFG-Sonderforschungsbereich Supramolekulare Chemie an Proteinen. Ihre Erkenntnisse wurden jetzt in der internationalen Forschungszeitschrift Nature Communications veröffentlicht.

Es gibt unzählige Proteinen und Moleküle; trotz dieser enormen Vielfalt hat es die Natur im Laufe der Evolution so eingerichtet, dass alle Reaktionen in der Zelle geordnet ablaufen. So lagern sich beispielsweise die richtigen Eiweiße zum richtigen Zeitpunkt genau in dem Teil der Zelle zu großen Multi-Enzym-Komplexen zusammen, wo sie gebraucht werden.


DNA-Container

UDE

Bisher war es nicht möglich, zielgerichtet einzelne Eiweiße in einem Komplex zu umschließen, ohne dabei die Eigenschaften oder die Funktion des Proteins zu beeinflussen. Dies gelingt nun erstmals mit der von Dr. Sacca eingesetzten DNA-Nanotechnologie.

Exemplarisch zeigt sie dies am Eiweiß DegP, das sehr große Komplexe bildet und eine wichtige Rolle bei der Qualitätskontrolle in der Zelle spielt: Es erkennt defekte Proteine und repariert oder vernichtet diese innerhalb seines Reaktionszentrums.

Dr. Sacca: „Um dieses Protein gezielt in einem DNA-Container einzufangen, haben wir in unserem SFB spezifische Binder, sogenannte Liganden, entwickelt, die an die Innenseite des DNA-Containers gekoppelt werden.“

Mit ihrem anderen Ende treten sie in schwache Wechselwirkung zur Oberfläche des Zielproteins. Auf diese Weise wird das Protein in dem Container wie in einem Käfig festgehalten, ohne dass hierdurch die Eigenschaften oder die Gestalt des Proteins beeinträchtigt werden.

Mithilfe der DNA-Technologie ist es auch möglich, den Container gleich in der richtigen Größe und geometrischen Form zu bauen. So erhält man passgenaue Röhren oder Kugeln, die das Zielprotein gleichmäßig und in einem definierten Abstand umschließen. Mit einer solchen maßgeschneiderten DNA-Hülle lassen sich künftig auch andere Proteine verschiedener Größe und Eigenschaften einfangen.

Dies eröffnet künftig viele neue Möglichkeiten: Mit den DNA-Hüllen könnte man z.B. Proteine gezielt in der Zelle isolieren und hier Signalwege (auch krankhafte) beeinflussen. Dr. Sacca: „Das Tolle an dieser Methode ist, dass auch solche Proteine eingefangen werden können, für die es bisher keine herkömmlichen Wirkstoffe gibt.“ Allerdings steckt diese Methode noch in den Kinderschuhen.

Weitere Informationen: Dr. Lydia Didt-Koziel, SFB 1093, Fakultät für Chemie, 201 T. 0201/183-4351, lydia.didt-koziel@uni-due.de

Redaktion: Beate Kostka, Tel. 0203/379-2430, beate.kostka@uni-due.de

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik