Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Musik unter dem Mikroskop

14.05.2014

Tröpfchen lassen sich auf einem Mikrofluidik-Chip so genau kontrollieren, dass sie zum Musikinstrument werden

In Wassertröpfchen ist Musik drin. Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen haben die Frequenzen, mit der Tröpfchen durch feine Röhrchen flossen, in Töne verwandelt. Das ist nicht nur Spielerei: Die Tröpfchen so genau kontrollieren zu können, dass sie zu Musikinstrumenten werden, ist auch für medizinische Diagnostik interessant. Derzeit werden beispielsweise Labors auf Mikrofluidik-Chips entwickelt, mit denen man auf kleinstem Raum winzige Flüssigkeitsproben wie etwa Blut untersuchen kann. Das neue Verfahren bringt diese Entwicklungen einen guten Schritt voran.


Mit welcher Frequenz Wassertröpfchen durch die Kanäle eines Mikrofluidik-Chips fließen, können Göttinger Max-Planck-Forscher präzise steuern. Der Chip ist ein etwa neun Quadratzentimeter großer, durchsichtiger Kunststoffblock, durch den dünne Röhrchen verlaufen. Durch die vier transparenten Schläuche wird Öl und Wasser in die Röhrchen gedrückt. Um die Bewegungen der Tröpfchen zu kontrollieren, legten die Forscher ein elektrisches Feld an den Chip an. Die Elektroden sind als gelbe Linien zu sehen, die roten und schwarzen Kabel sind die Stromleitungen. Die Frequenz der Tröpfchen wandelten die Forscher in Töne um.

© Nature 2014 / MPI für Dynamik und Selbstorganisation


Durch die winzigen Kanäle im Mikrofluidik-Chip fließen Wasser und Öl. Da sich Öl und Wasser nicht mischen, bildet das Wasser im Öl kleine Tröpfchen. Mit einer Wechselspannung von bis zu 1000 Volt kontrollierten die Göttinger Forscher, in welchem Abstand die Wassertröpfchen durch die Kanäle strömen: Je höher die angelegte Spannung, desto schneller folgten die Tröpfchen aufeinander – desto höher war also ihre Frequenz.

© Nature 2014 / MPI für Dynamik und Selbstorganisation

Töne und Melodien entstehen durch Schwingungen mit verschiedenen Frequenzen. Ob Gitarrensaiten schwingen, die Luft in einer Flöte oder die Membran eines Lautsprechers: Die Vibrationen setzen sich durch die Luft fort und treffen auf unsere Ohren. Je höher die Frequenz – also je schneller die Schwingungen –, desto höher ist der entstehende Ton.

Forscher haben nun am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen eine Methode entwickelt, um mithilfe von Wassertröpfchen Musik zu erzeugen. Mithilfe einer starken Wechselspannung stellten die Wissenschaftler genau ein, wieviele Tröpfchen pro Sekunde durch Röhrchen in einem Kunststoffchip flossen. Diese Tröpfchenfrequenzen wandelten sie elektronisch in Töne um. Das Verfahren stellen die Forscher in dem Online-Fachjournal Scientific Reports vor.

Chips für die Medizin

Die Forschung an dem neuen Musikinstrument könnte auch ganz praktische Bedeutung bekommen. Dabei haben sich die Forscher nämlich einen Grad an Kontrolle über die Tröpfchen angeeignet, der auch für medizinische Zwecke wichtig werden dürfte: Derzeit werden neue Diagnosemethoden entwickelt, um flüssige Proben von Patienten wie etwa Blut oder DNA in Form von winzigen Tröpfchen zu untersuchen. Dafür werden sogenannte Mikrofluidik-Chips eingesetzt, wie sie auch die Göttinger Forscher verwendeten. Ein solcher Chip besteht aus einem durchsichtigen Kunststoff, durch den dünne Röhrchen verlaufen. Durch diese Röhrchen fließen Öl und Wasser. Da sich die beiden Flüssigkeiten nicht mischen, bildet das Wasser im Öl kleine Tröpfchen. „Darin kann man zum Beispiel DNA-Moleküle oder Zellen einschließen, um sie zu untersuchen“, erklärt Jean-Christophe Baret, der die Forschungsgruppe am Göttinger Max-Planck-Institut leitet.

Einfache Methode mit Tücken

Für die medizinische Diagnose muss man die Bewegungen der Tröpfchen sehr genau kontrollieren. So könnte man beispielsweise darin eingeschlossene Zellen nach bestimmten Kriterien sortieren. Das ist etwa mithilfe einer elektrischen Spannung möglich.

Um diese Methode weiterzuentwickeln, legten die Göttinger Forscher eine Wechselspannung von bis zu 1000 Volt an einen Mikrofluidik-Chip an. So entstanden winzige Wassertropfen, die mit einem Durchmesser von wenigen Mikrometern nur unter dem Mikroskop sichtbar sind und die sich im elektrischen Feld bewegten. Je höher die angelegte Spannung war, desto schneller folgten die Tropfen aufeinander – desto höher war also ihre Frequenz.

Die Frequenzen übersetzten die Forscher nun in Töne. Dafür fügten sie einen fluoreszierenden Stoff zum Wasser hinzu; die Tröpfchen sendeten also Licht aus, wenn man sie mit einem Laser beleuchtete. Ein  Photovervielfacher wandelte das Licht in elektrische Signale um, und aus diesen erzeugte eine Soundkarte schließlich entsprechende Töne.

Der Praxistest: Ode an die Freude

Der erste Test war eine einfache Tonleiter: Dafür mussten die Forscher zunächst einmal das neue Musikinstrument „stimmen“, indem sie verschiedene elektrische Spannungen den unterschiedlichen Tonhöhen zuordneten. Als erste Melodie spielten sie die „Ode an die Freude“. Der Beginn der Beethoven-Sinfonie ist gut erkennbar, wenn er auch nicht ganz sauber intoniert wird: Die Frequenzen weichen hier und da um bis zu fünf Prozent vom Originalton ab, also etwa um einen Halbton.

Für die Ungenauigkeiten sind die mechanischen Eigenschaften des Mikrofluidik-Chips verantwortlich;  das heißt, die Tröpfchen folgen nicht immer in exakt gleichem Abstand aufeinander. Auch die elektrische Spannung braucht etwas Zeit, um einen neuen Wert anzunehmen. Die Tröpfchenfrequenz ändert sich also mit einer leichten Verzögerung. Das ist in der Melodie als kurzes glissando hörbar, also eine gleitende Veränderung der Tonhöhe, bevor der endgültige Ton erreicht wird.

Ein ganzes Labor auf einem Chip

Ob das System jemals als elektronisches Musikinstrument auf die Bühne kommt, ist zweifelhaft; doch die Forscher haben gezeigt, dass man die Bewegungen von Tröpfchen mithilfe von elektrischer Spannung sehr präzise steuern kann. Das ist ein wichtiger Schritt für die Entwicklung der medizinischen Chiplabors.

Wichtig ist dabei, dass sich mit dem neuen Verfahren viele Tröpfchen auf einmal kontrollieren lassen. „Für eine Krebs-Frühdiagnose ist es beispielsweise nötig, sehr viele DNA-Moleküle eines Patienten zu untersuchen, um den Anteil an mutierter DNA zu bestimmen,“ erläutert Baret.

Erste Mikrofluidik-Chips, die sich für solche und andere Analysezwecke eignen, sind bereits erhältlich. Wenn man allerdings Proben nach bestimmten Kriterien auswählen und sortieren möchte, wird die oben beschriebene Methode interessant: Mithilfe von elektrischen Feldern könnte man beispielsweise infizierte Zellen oder mutierte DNA-Moleküle aussortieren. In Zukunft könnte ein solcher Chip ein ganzes medizinisches Labor ersetzen.

Ansprechpartner 

Originalpublikation

 
The Microfluidic Jukebox
30. April 2014; doi:10.1038/srep04787

Dr. Jean-Christophe Baret | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8203174/mikrofluidik_chip_musik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie