Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Musik unter dem Mikroskop

14.05.2014

Tröpfchen lassen sich auf einem Mikrofluidik-Chip so genau kontrollieren, dass sie zum Musikinstrument werden

In Wassertröpfchen ist Musik drin. Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen haben die Frequenzen, mit der Tröpfchen durch feine Röhrchen flossen, in Töne verwandelt. Das ist nicht nur Spielerei: Die Tröpfchen so genau kontrollieren zu können, dass sie zu Musikinstrumenten werden, ist auch für medizinische Diagnostik interessant. Derzeit werden beispielsweise Labors auf Mikrofluidik-Chips entwickelt, mit denen man auf kleinstem Raum winzige Flüssigkeitsproben wie etwa Blut untersuchen kann. Das neue Verfahren bringt diese Entwicklungen einen guten Schritt voran.


Mit welcher Frequenz Wassertröpfchen durch die Kanäle eines Mikrofluidik-Chips fließen, können Göttinger Max-Planck-Forscher präzise steuern. Der Chip ist ein etwa neun Quadratzentimeter großer, durchsichtiger Kunststoffblock, durch den dünne Röhrchen verlaufen. Durch die vier transparenten Schläuche wird Öl und Wasser in die Röhrchen gedrückt. Um die Bewegungen der Tröpfchen zu kontrollieren, legten die Forscher ein elektrisches Feld an den Chip an. Die Elektroden sind als gelbe Linien zu sehen, die roten und schwarzen Kabel sind die Stromleitungen. Die Frequenz der Tröpfchen wandelten die Forscher in Töne um.

© Nature 2014 / MPI für Dynamik und Selbstorganisation


Durch die winzigen Kanäle im Mikrofluidik-Chip fließen Wasser und Öl. Da sich Öl und Wasser nicht mischen, bildet das Wasser im Öl kleine Tröpfchen. Mit einer Wechselspannung von bis zu 1000 Volt kontrollierten die Göttinger Forscher, in welchem Abstand die Wassertröpfchen durch die Kanäle strömen: Je höher die angelegte Spannung, desto schneller folgten die Tröpfchen aufeinander – desto höher war also ihre Frequenz.

© Nature 2014 / MPI für Dynamik und Selbstorganisation

Töne und Melodien entstehen durch Schwingungen mit verschiedenen Frequenzen. Ob Gitarrensaiten schwingen, die Luft in einer Flöte oder die Membran eines Lautsprechers: Die Vibrationen setzen sich durch die Luft fort und treffen auf unsere Ohren. Je höher die Frequenz – also je schneller die Schwingungen –, desto höher ist der entstehende Ton.

Forscher haben nun am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen eine Methode entwickelt, um mithilfe von Wassertröpfchen Musik zu erzeugen. Mithilfe einer starken Wechselspannung stellten die Wissenschaftler genau ein, wieviele Tröpfchen pro Sekunde durch Röhrchen in einem Kunststoffchip flossen. Diese Tröpfchenfrequenzen wandelten sie elektronisch in Töne um. Das Verfahren stellen die Forscher in dem Online-Fachjournal Scientific Reports vor.

Chips für die Medizin

Die Forschung an dem neuen Musikinstrument könnte auch ganz praktische Bedeutung bekommen. Dabei haben sich die Forscher nämlich einen Grad an Kontrolle über die Tröpfchen angeeignet, der auch für medizinische Zwecke wichtig werden dürfte: Derzeit werden neue Diagnosemethoden entwickelt, um flüssige Proben von Patienten wie etwa Blut oder DNA in Form von winzigen Tröpfchen zu untersuchen. Dafür werden sogenannte Mikrofluidik-Chips eingesetzt, wie sie auch die Göttinger Forscher verwendeten. Ein solcher Chip besteht aus einem durchsichtigen Kunststoff, durch den dünne Röhrchen verlaufen. Durch diese Röhrchen fließen Öl und Wasser. Da sich die beiden Flüssigkeiten nicht mischen, bildet das Wasser im Öl kleine Tröpfchen. „Darin kann man zum Beispiel DNA-Moleküle oder Zellen einschließen, um sie zu untersuchen“, erklärt Jean-Christophe Baret, der die Forschungsgruppe am Göttinger Max-Planck-Institut leitet.

Einfache Methode mit Tücken

Für die medizinische Diagnose muss man die Bewegungen der Tröpfchen sehr genau kontrollieren. So könnte man beispielsweise darin eingeschlossene Zellen nach bestimmten Kriterien sortieren. Das ist etwa mithilfe einer elektrischen Spannung möglich.

Um diese Methode weiterzuentwickeln, legten die Göttinger Forscher eine Wechselspannung von bis zu 1000 Volt an einen Mikrofluidik-Chip an. So entstanden winzige Wassertropfen, die mit einem Durchmesser von wenigen Mikrometern nur unter dem Mikroskop sichtbar sind und die sich im elektrischen Feld bewegten. Je höher die angelegte Spannung war, desto schneller folgten die Tropfen aufeinander – desto höher war also ihre Frequenz.

Die Frequenzen übersetzten die Forscher nun in Töne. Dafür fügten sie einen fluoreszierenden Stoff zum Wasser hinzu; die Tröpfchen sendeten also Licht aus, wenn man sie mit einem Laser beleuchtete. Ein  Photovervielfacher wandelte das Licht in elektrische Signale um, und aus diesen erzeugte eine Soundkarte schließlich entsprechende Töne.

Der Praxistest: Ode an die Freude

Der erste Test war eine einfache Tonleiter: Dafür mussten die Forscher zunächst einmal das neue Musikinstrument „stimmen“, indem sie verschiedene elektrische Spannungen den unterschiedlichen Tonhöhen zuordneten. Als erste Melodie spielten sie die „Ode an die Freude“. Der Beginn der Beethoven-Sinfonie ist gut erkennbar, wenn er auch nicht ganz sauber intoniert wird: Die Frequenzen weichen hier und da um bis zu fünf Prozent vom Originalton ab, also etwa um einen Halbton.

Für die Ungenauigkeiten sind die mechanischen Eigenschaften des Mikrofluidik-Chips verantwortlich;  das heißt, die Tröpfchen folgen nicht immer in exakt gleichem Abstand aufeinander. Auch die elektrische Spannung braucht etwas Zeit, um einen neuen Wert anzunehmen. Die Tröpfchenfrequenz ändert sich also mit einer leichten Verzögerung. Das ist in der Melodie als kurzes glissando hörbar, also eine gleitende Veränderung der Tonhöhe, bevor der endgültige Ton erreicht wird.

Ein ganzes Labor auf einem Chip

Ob das System jemals als elektronisches Musikinstrument auf die Bühne kommt, ist zweifelhaft; doch die Forscher haben gezeigt, dass man die Bewegungen von Tröpfchen mithilfe von elektrischer Spannung sehr präzise steuern kann. Das ist ein wichtiger Schritt für die Entwicklung der medizinischen Chiplabors.

Wichtig ist dabei, dass sich mit dem neuen Verfahren viele Tröpfchen auf einmal kontrollieren lassen. „Für eine Krebs-Frühdiagnose ist es beispielsweise nötig, sehr viele DNA-Moleküle eines Patienten zu untersuchen, um den Anteil an mutierter DNA zu bestimmen,“ erläutert Baret.

Erste Mikrofluidik-Chips, die sich für solche und andere Analysezwecke eignen, sind bereits erhältlich. Wenn man allerdings Proben nach bestimmten Kriterien auswählen und sortieren möchte, wird die oben beschriebene Methode interessant: Mithilfe von elektrischen Feldern könnte man beispielsweise infizierte Zellen oder mutierte DNA-Moleküle aussortieren. In Zukunft könnte ein solcher Chip ein ganzes medizinisches Labor ersetzen.

Ansprechpartner 

Originalpublikation

 
The Microfluidic Jukebox
30. April 2014; doi:10.1038/srep04787

Dr. Jean-Christophe Baret | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8203174/mikrofluidik_chip_musik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften