Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Muschelproteine: Kleben auf Lücke

05.11.2008
Klebende Muschelproteine haften weitgehend unabhängig davon, wie viele bindende Bestandteile sie enthalten - damit werden neuartige Klebstoffe möglich

Chemiker können von manchen Muscheln lernen. Miesmuscheln etwa produzieren einen Klebstoff, der auch unter Wasser fest an Metallen und Stein haftet. Das entsprechende Protein der Schalentiere ahmen Chemiker mit einem Kunststoff nach, der die gleichen klebenden Bestandteile enthält. Egal ob der Kunststoff ganz oder nur zu einem Zehntel aus der Komponente besteht, er haftet gleich gut. Das haben Forscher des Max-Planck-Instituts für Polymerforschung und der Johannes Gutenberg-Universität in Mainz festgestellt. Die 90 Prozent des Polymers, die für eine gute Haftung nicht nötig sind, lassen sich womöglich mit anderen Funktionen ausstatten, etwa mit chemischen Anhängseln, die auf anderen Oberflächen Halt geben können als auf Metall oder Stein. (Advanced Materials, Oktober 2008)


So lässt sich kleben: Manche Muscheln heften sich mit Proteinen an den Untergrund, die mit einem geringen Anteil der bindenden Aminosäure Dopa genauso gut haften wie mit einem hohen. Bild: Creative Commons / Andreas Trepte, Marburg

Rau geht es im Leben vieler Muscheln zu: Wenn sie nahe der Küste auf dem Meeresgrund siedeln, zerrt das ständige Vor- und Zurück der Meeresbrandung an ihnen. Um von den Wogen nicht weggespült zu werden, heften sie sich mithilfe spezieller Proteine am Untergrund fest. Damit können sie etwas, womit Ingenieure noch Schwierigkeiten haben: unter Wasser kleben. Das verdanken die Schalentiere der Aminosäure Dihydroxyphenylalanin, kurz Dopa. Sie kann dank ihres chemischen Aufbaus sehr stabile Verbindungen zu Metallen und Mineralien knüpfen und ist in den Adhäsionsproteinen enthalten, mit denen sich die Muscheln am Boden festkleben.

Die klebenden Muschelproteine haben Wissenschaftler um Hans-Jürgen Butt, Direktor am Max-Planck-Institut für Polymerforschung in Mainz, und Wolfgang Tremel, Professor an der Universität Mainz, mit künstlichen Polymeren nachgeahmt. Diese bestehen aus langen Molekülketten und tragen die gleichen chemischen Anhängsel, die auch die Muschelproteine haftbar machen. Wie viele der Kettenglieder die bindenden Anhängsel von Dopa tragen spielt dabei für die klebende Wirkung der Kette insgesamt keine Rolle - solange es nicht weniger als ein Zehntel der Glieder sind. Das haben die Mainzer Forscher nun festgestellt.

Die Forscher haben gemessen, mit welcher Kraft sie verschiedene Polymerketten von einer Oberfläche lösen konnten. Dabei testeten sie Polymere, die gänzlich, zu einem Fünftel oder einem Zehntel aus den Gliedern mit dem bindenden Anhängsel von Dopa bestanden. Die Kraft, um ein einzelnes Polymer von der Oberfläche abzuziehen, war stets dieselbe, nämlich 67 Pikonewton. Das entspricht ungefähr dem Millionsten Teil der Gewichtskraft eines Flohs. Diese Kraft alleine könnte keine Muschel am Meeresgrund halten. Die Schalentiere kleben sich aber mit einem Klecks unzähliger Polymerketten am Boden fest und können so der Brandung trotzen.

"Dass die klebende Wirkung der Proteine bis zu einem gewissen Grad unabhängig von der Zahl der Bindungsstellen ist, ließe sich ausnutzen, um den übrigen Gliedern des Polymers andere Funktionen zu geben", sagt Hans-Jürgen Butt. Chemiker könnten etwa ein Polymer herstellen, das auf verschiedenen Materialien gleich gut haftet. Dopa verbindet sich vor allem mit Metallen und Mineralien. Andere Glieder der Polymerkette könnten Chemiker mit Anhängseln versehen, die auf Holz, Glas oder Knochen haften. "Kleber, die Metall und Knochen verbinden, wären etwa interessant um künstliche Gelenke zu befestigen", sagt Wolfgang Tremel.

Warum die Haftkraft der Polymerkette weitgehend unabhängig von der Zahl der bindenden Glieder ist, war den Mainzer Forschern erst einmal rätselhaft. "Gewöhnlich stellen wir uns ein klebendes Polymer wie einen Streifen Tesafilm vor, der über seine ganze Länge haftet", sagt Hans-Jürgen Butt. Ein Klebestreifen lässt sich jedoch umso schwerer abziehen, je mehr Bindungen ihn am Untergrund festhalten. Für die Muschelproteine und ihre künstlichen Pendants taugt dieses Modell also nicht, das die Klebewirkung eines Polymers als kontinuierliche Kraft beschreibt.

"Wir betrachten unsere Polymere als Ketten einzelner Bindungsstellen, verbunden von sehr weichen Federn", sagt Wolfgang Tremel. Beim Abziehen messen er und seine Mitarbeiter daher nur die Kraft, mit der eine einzelne Bindungsstelle am Untergrund verankert ist. Wie dicht die klebenden Ketteglieder aufeinander folgen ist dann unerheblich.

Die Dichte der Bindungsstellen würde sich auswirken, wenn ein Gewicht auf ganzer Länge gleichmäßig an dem Polymer zieht und nicht von einem Ende her. "In der Praxis spielt das nur eine Rolle, wenn der Untergrund absolut eben ist", erklärt Butt: "Die meisten Oberflächen sind auf der Nanoskala aber sehr rau, sodass ein Gewicht an einem Ende immer stärker an ihm zieht als am anderen."

Entsprechend dieses Ablöseprozesses gestalten die Wissenschaftler ihr Experiment: Sie tragen eine einzelne Schicht des Polymers auf eine Titanoberfläche. Mit der nur wenige Nanometer messenden Titanspitze eines Rasterkraftmikroskops nehmen sie nun eine einzelne Kette des Polymers auf, so wie man einen Faden mit einem Finger von einem Tisch hebt. Anschließend ziehen sie die Spitze von der Oberfläche weg und messen die dafür erforderliche Kraft. 67 Pikonewton benötigen sie demnach, um die Bindung zwischen der Titanoberfläche und einer Dopa Gruppe am Polymer zu brechen. Da das Polymer sich selbst wie eine weiche Feder verhält, fällt die Kraft bis zum nächsten Bindungsbruch kaum ab, sondern bleibt nahezu konstant.

Die Erkenntnisse aus diesen Experimenten wollen die Mainzer Forscher nun nutzen, um Polymere mit Bindungsstellen für verschiedene Materialien herzustellen. Besonders geeignet, um dieses Thema künftig weiter zu verfolgen, ist das neugegründete Max Planck Graduate Center, das sich speziell solchen interdisziplinären Projekten widmen wird.

Originalveröffentlichung:

Jijun Wang, Muhammed Nawaz Tahir, Michael Kappl, Wolfgang Tremel, Nadine Metz, Matthias Barz, Patrick Theato, Hans-Jürgen Butt
Influence of Binding-Site Density in Wet Bioadhesion
Advanced Materials, Oktober 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics