Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die molekularen Grundlagen des Erdbeeraromas: Warum die Erdbeere nach Erdbeere riecht

13.05.2013
Es ist Erdbeerzeit: Rot und saftig liegen die Früchte in den Auslagen der Märkte. Das Obst wird hierzulande immer beliebter: 2012 verzehrten die Deutschen pro Kopf 3,5 Kilogramm Erdbeeren – ein Kilogramm mehr als noch vor zehn Jahren. Wie das typische Aroma der Früchte entsteht, hat jetzt ein Team von Wissenschaftlern an der Technischen Universität (TUM) aufgeklärt.

Wie Nahrungsmittel schmecken, liegt nicht allein am Geschmackssinn: Zwar erkennt die Zunge Geschmackskomponenten wie süß, sauer, salzig, bitter und umami (herzhaft). Doch zu einem „runden“ Geschmackserlebnis tragen vor allem Gerüche bei – wie das Beispiel der Erdbeere zeigt.


Die Vorstufe des HDMF-Geruchstoffs (orange und rote Kugeln) bindet an das Enzym FaEO (grün). Das Co-Enzym NADPH, hier als mehrfarbiges Stabmodell dargestellt, liefert die erforderlichen Elektronen für die Bildung von HDMF, die prägende Aromakomponente reifer Erdbeeren. A. Schiefner/TUM


Die Detailsicht der Substratbindetasche (graue halbtransparente Oberfläche) zeigt die Übertragung zweier Elektronen von NADPH auf die Vorstufe des HDMF-Geruchsstoffs (orange-rote Ringstruktur). Dabei entsteht die Aromasubstanz HDMF. A. Schiefner/TUM

Das unverwechselbare Aroma der Gartenerdbeere setzt sich aus etwa einem Dutzend verschiedener Geruchsstoffe zusammen. Dabei sticht eine Komponente besonders heraus: HDMF (4-Hydroxy-2,5-dimethyl-3(2H)-furanon), auch unter dem Markennamen Furaneol bekannt.

Warum das so ist, erklärt Prof. Wilfried Schwab vom TUM-Fachgebiet Biotechnologie der Naturstoffe, der bereits seit mehreren Jahren an der biologischen Bildung dieser Substanz forscht: „In der reifen Erdbeere ist der Mengenanteil dieses Aromastoffes mit bis zu 50 Milligramm pro Kilogramm besonders hoch und liegt damit um einige Größeneinheiten über dem Geruchsschwellenwert. Es verleiht dem Aroma der reifen Früchte seinen karamellartigen Charakter.“

Außer in Erdbeeren kommt HDMF auch in der Ananas und in der Tomate vor. Die Pflanzen bilden das Aroma in mehreren Schritten aus dem Fruchtzucker (Fructose). „Uns interessierte insbesondere der abschließende Biokatalyse-Schritt zum fertigen Aroma“ berichtet Prof. Arne Skerra vom TUM-Lehrstuhl für Biologische Chemie. Dabei bindet eine Molekül-Vorstufe an das Enzym FaEO (Fragaria x ananassa Enon-Oxidoreduktase), das die Verbindung in das Endprodukt HDMF umwandelt.

Analyse offenbart neuen Syntheseweg

Den TUM-Wissenschaftlern gelang es, diesen Reaktionsweg im Detail abzubilden. Um zu verstehen, wie Enzyme die Biosynthese derartiger neuer Stoffwechsel-Produkte katalysieren, wenden sie das Verfahren der Röntgen-Strukturanalyse an. Damit lassen sich Moleküle letztlich dreidimensional darstellen. „Für das Erdbeeraroma haben wir wie bei einem Puzzlespiel sechs verschiedene Enzym-Molekül-Konstellationen durchgespielt – und so schließlich verstanden, wie FaEO den HDMF-Aromastoff herstellt“, so Dr. André Schiefner vom Lehrstuhl für Biologische Chemie.
Während dieser Untersuchungen stellten die Wissenschaftler fest, dass es sich bei der katalytischen Reaktion um einen bisher noch nicht bekannten Mechanismus handelt. Die Verbindung wird reduziert, dabei werden Elektronen zielgerichtet auf eine bestimmte Stelle des Moleküls übertragen. Das Enzym FaEO ist damit erster Vertreter einer neuen Klasse von Biokatalysatoren, was möglicherweise auch interessante Anwendungen in der industriellen (weißen) Biotechnologie eröffnet.

Die aktuelle Forschungsarbeit liefert den Weihenstephaner Wissenschaftlern wertvolle Informationen zur Geschmacksbildung der verbreiteten Kulturpflanze, wie Skerra ausführt: „Im Gegensatz zu Kaffee und Vanille sind die biochemischen Prozesse beim Erdbeeraroma sehr komplex – jetzt hat unser TUM-Team einen wichtigen Syntheseschritt geklärt.“ Damit könnte das echte Erdbeeraroma schon bald biosynthetisch aus Fruchtzucker gewonnen werden, beispielsweise um Getränke oder Lebensmittel wie Joghurt zu verfeinern.
Publikation:
Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone; André Schiefner, Quirin Sinz, Irmgard Neumaier, Wilfried Schwab, and Arne Skerra; The Journal of Biological Chemistry, April 15, 2013; http://www.jbc.org/cgi/doi/10.1074/jbc.M113.453852

Kontakt:
Prof. Dr. Arne Skerra
Technische Universität München
Lehrstuhl für biologische Chemie
T: +49.8161.71-4351
E: skerra@tum.de
W: http://www.wzw.tum.de/bc

Prof. Dr. Wilfried Schwab
Technische Universität München
Fachgebiet Biotechnologie der Naturstoffe
T: +49.8161.71.2913
E: wilfried.schwab@tum.de
W: http://www.bina.wzw.tum.de/

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30835/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise