Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Darm aus dem Reagenzglas für die Ernährungsforschung

20.11.2015

Dass in der Petrischale aus Stammzellen kleine, dreidimensionale Vorläufer eines Organes entstehen können, hat eine Revolution in der Biomedizin ausgelöst. Doch was kann an einem solchen Organoid in vitro erforscht werden? Ein Team der Technischen Universität München (TUM) legt nun erstmals dar, wie es gezüchtete Mini-Därme in der Ernährungs- und Diabetesforschung einsetzt.

Die Erforschung des Darmes ist in den vergangenen Jahren zunehmend in den Fokus gerückt. Aufgrund seiner enormen Fläche – vergleichbar mit einer Einzimmerwohnung – und seiner nach dem Gehirn ähnlich großen Zahl an Nervenzellen wird der Darm manchmal als Bauchhirn des Menschen bezeichnet.


Viertelmillimeter große Organoide wie dieser eingefärbte Mini-Darm zeigen essentielle Funktionen eines echten Darms.

(Foto: TUM/ Zietek)


Die Darstellung zeigt rechs das im Reagenzglas gezüchtete Organoid und links die Grafik erklärt seine Funktionen.

(Foto: TUM/ Zietek)

Er beeinflusst unseren Immunstatus, den Stoffwechsel und nimmt die übers Essen zugeführten Nährstoffe auf. Spezielle Zellen in der Darmwand erkennen dabei anhand von Sensoren, ob und welche Hormone passend dafür ins Blut ausgeschüttet werden müssen. Eine ausgefeilte innere Schaltzentrale.

Wie aus Zellen ein Organoid wächst

Einige Darmhormone steuern unter anderem Blutzucker, Appetit und Fettstoffwechsel. Sie heißen Inkretin-Hormone. Diabetiker oder Adipöse werden bereits erfolgreich therapiert mit Medikamenten, die auf der Wirkweise dieser Hormone beruhen. Doch noch zu wenig ist bekannt über die Inkretin-Ausschüttung – wie genau läuft sie ab?

Forschern der TU München ist es nun gelungen, durch eine neue Methode, die vor allem in der Stammzellenforschung und für die regenerative Medizin angewandt wird, ein robustes Darm-Modell zur molekularen Erforschung der Inkretin-Ausschüttung im Reagenzglas (in vitro) zu erhalten.

Dafür müssen sie zunächst kleine Darmstücke isolieren, die auch Stammzellen enthalten – in diesem Falle kommen sie von Mäusen. Im nächsten Schritt im Reagenzglas regt eine Nährlösung die Stammzellen an, sich dreidimensional zu einer Organstruktur zu entwickeln. Nach wenigen Tagen entsteht ein für die Forschung brauchbares Organoid in kugeliger Form von der Größe eines Viertelmillimeters.

Mini-Darm ist funktionsfähig wie ein normaler Darm

„Das Besondere für unsere wissenschaftliche Arbeit am Organoid des Darmes ist, dass wir die Aktivität in seinem Inneren beobachten können“, erklärt Dr. Tamara Zietek vom Lehrstuhl für Ernährungsphysiologie. „Die Mini-Därme zeigen essentielle Funktionen eines echten Darms“, sagt die Wissenschaftlerin der TUM.

Die Darm-Organoide können
• aktiv Nährstoffe und Medikamente aufnehmen,
• Hormone nach einer Aktivierung durch Nährstoffe ausschütten und
• Signale in der Darmzelle weitergeben, um diese Prozesse zu steuern.

„Diese Vorgänge in ein und demselben In-vitro-Modell zu untersuchen war bislang nicht möglich, weil die herkömmlichen Modelle nicht für all diese Messungen geeignet sind“, sagt Zietek, die korrespondierende Autorin des in „Scientific Reports“ der Nature Publishing Group veröffentlichten Artikels ist. Zudem könne sie mit den einmal generierten Mini-Därmen über Monate hinweg arbeiten, da sie im Labor vermehrt werden könnten. „Dadurch reduziert sich die Zahl der Versuchstiere drastisch“, sagt die Wissenschaftlerin.

Interdisziplinäre Zusammenarbeit

Das Verfahren hat Zietek zusammen mit Dr. Eva Rath vom Lehrstuhl für Ernährung und Immunologie entwickelt: Die beiden Wissenschaftlerinnen haben interdisziplinär die Technologie der Organoid-Kultivierung mit der molekularen Ernährungsforschung verknüpft. Nun weisen sie nach, dass die Mini-Därme ideale Modelle für Untersuchungen von Hormon-Ausschüttung und Transportmechanismen im Verdauungstrakt sind. „Für die gastroenterologische Grundlagenforschung, aber genauso den biomedizinischen und pharmakologischen Bereich ein großer Fortschritt“, urteilt Zietek. Im nächsten Schritt gehe es um die Arbeit mit Mini-Därmen gezüchtet aus menschlichen Darmbiopsien: „Wir stehen bereits in Kontakt mit einem Krankenhaus, um für uns benötigtes Forschungsmaterial zu erhalten.“

Diese Methode kann in Anbetracht der steigenden Zahl von Diabetikern und Übergewichtigen der Ernährungsforschung dabei helfen, neue Therapieformen zu entwickeln.

Publikation:
Tamara Zietek, Eva Rath, Dirk Haller und Hannelore Daniel: Intestinal organoids for assesing nutrient transport, sensing and incretin secretion, Scientific Reports 19.11.2015.
DOI: 10.1038/srep16831
http://www.nature.com/articles/srep16831

Kontakt: 
Dr. Tamara Zietek
Technische Universität München
Lehrstuhl für Ernährungsphysiologie
Tel: +49 (0)8161/71 3553
E-Mail: zietek@tum.de
http://www.nutrition.tum.de/index.php?id=39

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32752/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie