Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Darm aus dem Reagenzglas für die Ernährungsforschung

20.11.2015

Dass in der Petrischale aus Stammzellen kleine, dreidimensionale Vorläufer eines Organes entstehen können, hat eine Revolution in der Biomedizin ausgelöst. Doch was kann an einem solchen Organoid in vitro erforscht werden? Ein Team der Technischen Universität München (TUM) legt nun erstmals dar, wie es gezüchtete Mini-Därme in der Ernährungs- und Diabetesforschung einsetzt.

Die Erforschung des Darmes ist in den vergangenen Jahren zunehmend in den Fokus gerückt. Aufgrund seiner enormen Fläche – vergleichbar mit einer Einzimmerwohnung – und seiner nach dem Gehirn ähnlich großen Zahl an Nervenzellen wird der Darm manchmal als Bauchhirn des Menschen bezeichnet.


Viertelmillimeter große Organoide wie dieser eingefärbte Mini-Darm zeigen essentielle Funktionen eines echten Darms.

(Foto: TUM/ Zietek)


Die Darstellung zeigt rechs das im Reagenzglas gezüchtete Organoid und links die Grafik erklärt seine Funktionen.

(Foto: TUM/ Zietek)

Er beeinflusst unseren Immunstatus, den Stoffwechsel und nimmt die übers Essen zugeführten Nährstoffe auf. Spezielle Zellen in der Darmwand erkennen dabei anhand von Sensoren, ob und welche Hormone passend dafür ins Blut ausgeschüttet werden müssen. Eine ausgefeilte innere Schaltzentrale.

Wie aus Zellen ein Organoid wächst

Einige Darmhormone steuern unter anderem Blutzucker, Appetit und Fettstoffwechsel. Sie heißen Inkretin-Hormone. Diabetiker oder Adipöse werden bereits erfolgreich therapiert mit Medikamenten, die auf der Wirkweise dieser Hormone beruhen. Doch noch zu wenig ist bekannt über die Inkretin-Ausschüttung – wie genau läuft sie ab?

Forschern der TU München ist es nun gelungen, durch eine neue Methode, die vor allem in der Stammzellenforschung und für die regenerative Medizin angewandt wird, ein robustes Darm-Modell zur molekularen Erforschung der Inkretin-Ausschüttung im Reagenzglas (in vitro) zu erhalten.

Dafür müssen sie zunächst kleine Darmstücke isolieren, die auch Stammzellen enthalten – in diesem Falle kommen sie von Mäusen. Im nächsten Schritt im Reagenzglas regt eine Nährlösung die Stammzellen an, sich dreidimensional zu einer Organstruktur zu entwickeln. Nach wenigen Tagen entsteht ein für die Forschung brauchbares Organoid in kugeliger Form von der Größe eines Viertelmillimeters.

Mini-Darm ist funktionsfähig wie ein normaler Darm

„Das Besondere für unsere wissenschaftliche Arbeit am Organoid des Darmes ist, dass wir die Aktivität in seinem Inneren beobachten können“, erklärt Dr. Tamara Zietek vom Lehrstuhl für Ernährungsphysiologie. „Die Mini-Därme zeigen essentielle Funktionen eines echten Darms“, sagt die Wissenschaftlerin der TUM.

Die Darm-Organoide können
• aktiv Nährstoffe und Medikamente aufnehmen,
• Hormone nach einer Aktivierung durch Nährstoffe ausschütten und
• Signale in der Darmzelle weitergeben, um diese Prozesse zu steuern.

„Diese Vorgänge in ein und demselben In-vitro-Modell zu untersuchen war bislang nicht möglich, weil die herkömmlichen Modelle nicht für all diese Messungen geeignet sind“, sagt Zietek, die korrespondierende Autorin des in „Scientific Reports“ der Nature Publishing Group veröffentlichten Artikels ist. Zudem könne sie mit den einmal generierten Mini-Därmen über Monate hinweg arbeiten, da sie im Labor vermehrt werden könnten. „Dadurch reduziert sich die Zahl der Versuchstiere drastisch“, sagt die Wissenschaftlerin.

Interdisziplinäre Zusammenarbeit

Das Verfahren hat Zietek zusammen mit Dr. Eva Rath vom Lehrstuhl für Ernährung und Immunologie entwickelt: Die beiden Wissenschaftlerinnen haben interdisziplinär die Technologie der Organoid-Kultivierung mit der molekularen Ernährungsforschung verknüpft. Nun weisen sie nach, dass die Mini-Därme ideale Modelle für Untersuchungen von Hormon-Ausschüttung und Transportmechanismen im Verdauungstrakt sind. „Für die gastroenterologische Grundlagenforschung, aber genauso den biomedizinischen und pharmakologischen Bereich ein großer Fortschritt“, urteilt Zietek. Im nächsten Schritt gehe es um die Arbeit mit Mini-Därmen gezüchtet aus menschlichen Darmbiopsien: „Wir stehen bereits in Kontakt mit einem Krankenhaus, um für uns benötigtes Forschungsmaterial zu erhalten.“

Diese Methode kann in Anbetracht der steigenden Zahl von Diabetikern und Übergewichtigen der Ernährungsforschung dabei helfen, neue Therapieformen zu entwickeln.

Publikation:
Tamara Zietek, Eva Rath, Dirk Haller und Hannelore Daniel: Intestinal organoids for assesing nutrient transport, sensing and incretin secretion, Scientific Reports 19.11.2015.
DOI: 10.1038/srep16831
http://www.nature.com/articles/srep16831

Kontakt: 
Dr. Tamara Zietek
Technische Universität München
Lehrstuhl für Ernährungsphysiologie
Tel: +49 (0)8161/71 3553
E-Mail: zietek@tum.de
http://www.nutrition.tum.de/index.php?id=39

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32752/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie