Minderheiten leisten mehr – Mikroorganismen bei der Arbeit zugeschaut

In vielen Ökosystemstudien wurden solche Minderheiten bisher vernachlässigt. Das kann leicht zu falschen Rückschlüssen führen, betonen die Autoren.

Mikrorganismen sind immer und überall – aber wer macht wann eigentlich was?

Einer internationalen Forschergruppe um Niculina Musat vom Max-Planck-Institut für Marine Mikrobiolgie in Bremen ist das Kunststück gelungen, zeitgleich den Stoffwechsel und die Identität einzelner Bakterienzellen zu bestimmen. Im Schweizer Alpensee Lago di Cadagno verglichen die Forscher die Stoffwechselleistung dreier Bakterienarten. Im Fachjournal „Proceedings of the National Academy of Science“ (PNAS) präsentieren sie nun das überraschende Ergebnis: der Bärenanteil des Stoffumsatzes wird von einem winzigen Teil der Bakteriengemeinschaft geleistet. Jene Bakterienart, die nur 0,3 Prozent aller Bakterien stellte, war für über 40 Prozent der Ammonium- und 70 Prozent der Kohlenstoffaufnahme zuständig.

Im Gegensatz zu den meisten Binnengewässern ist der Lago di Cadagno stabil geschichtet (meromiktisch). In der Übergangsregion zwischen der oberen, sauerstoffhaltigen und der unteren, sauerstofffreien Schicht leben die Chromatium okenii, Lamprocystis purpurea und Chlorobium clathratiforme – allesamt Mikroorganismen, die ohne Sauerstoff leben und Photosynthese betreiben. Chlorobium clathratiforme ist die in der untersuchten Schicht häufigste Bakterienart, sie stellt bis zu 80 Prozent der Zellen. Dennoch war C. clathratiforme nur für etwa je 15 Prozent der gesamten Ammonium- und Kohlenstoffaufnahme zuständig. Lamprocystis purpurea, eine häufige, kleine Art, nahm weniger als zwei Prozent der gemessenen Nährstoffe auf. Die vergleichsweise großen Zellen von Chromatium okenii hingegen, die einen winzigen Teil der Bakterienpopulation ausmachten, waren für den Großteil des Umsatzes von Kohlenstoff und Ammonium verantwortlich.

„Die meisten Studien über die Ökologie mikrobieller Gemeinschaften beschäftigen sich mit häufig auftretenden Organismen. Das gleiche gilt für genetische Analysen von Umweltproben. Organismengruppen mit einer Häufigkeit von unter ein Prozent werden hingegen üblicherweise für unwichtig gehalten und vernachlässigt. Doch gerade diese Minderheiten können für das Verständnis eines Ökosystems wesentlich sein, das zeigen unsere Ergebnisse ganz klar. Schenkt man ihnen keine Beachtung, kann man leicht zu falschen Schlüssen kommen“, betont Mitautor Marcel Kuypers.

Als Musat und ihre Kollegen einzelne Zellen innerhalb einer Arten verglichen, stießen sie auf eine zweite Überraschung: Auch Zellen der gleichen Art unterschieden sich sehr viel stärker als erwartet in ihrer Aktivität. Die Forscher vermuten genetische Ursachen. Die individuellen Unterschiede beruhten möglicherweise auf kleinen Unterschieden im Genom, die sich im Laufe der Evolution durch Mutationen entwickelt haben. Nur Mutationen, die ihren Trägern Vorteile in ihrem begrenzten Lebensraum verschaffen, setzen sich durch.

Möglich wurden die vorliegenden Messungen mit Hilfe der so genannten NanoSIMS-Technik. Die Bremer Max-Planck-Forscher haben ihr NanoSIMS seit Mitte 2008 in Betrieb und haben dieses besondere Massenspektrometer, von dem es weltweit nur etwa 20 Stück gibt, auf ökologische Fragestellungen optimiert. So wurde es möglich, die Verteilung ausgewählter markierter Kohlenstoff- und Stickstoffverbindungen innerhalb einzelner Zellen anzuzeigen. Gleichzeitig identifizieren die Forscher die Bakterienart mit Hilfe molekulargenetischer Techniken. „Diese Technik wird in Zukunft die ökologischen Untersuchungen revolutionieren“, ist sich MPI-Arbeitsgruppenleiter Marcel Kuypers sicher.

Der Befund der Forscher erinnert auch an das Funktionieren menschlicher Gesellschaften: Die so genannte Pareto-Verteilung des italienischen Ökonoms Vilfredo Pareto belegt, dass nur 20 Prozent einer Population etwa 80 Prozent der Leistung erwirtschaften. Prinzipielle Bestätigung gefunden hat dieser empirische Befund in einer Vielzahl von wirtschaftlichen und soziologischen Studien und findet Anwendung in modernen Management-Konzepten.

Manfred Schlösser
Fanni Aspetsberger
Rückfragen an
Dr. Marcel Kuypers 0421 2028 647
Dr. Niculina Musat 0421 2028 653
oder an die Pressesprecher
Dr. Manfred Schlösser 0421 2028 704
Dr. Fanni Aspetsberger 0421 2028 704
Originalartikel:
A single cell view on the ecophysiology of anaerobic phototrophic bacteria
Niculina Musat, Hannah Halm, Bärbel Winterholler, Peter Hoppe, Sandro Peduzzi, Francois Hillion, Francois Horreard, Rudolf Amann, Bo B. Jørgensen, and Marcel M.M. Kuypers.

doi: 10.1073/pnas.0809329105

Beteiligte Institute
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
Max Planck Institute for Chemistry, Joh.-J.-Becher Weg 27, 55128 Mainz, Germany
Cantonal Institute of Microbiology and Alpine Biology Center Foundation Piora, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland

Cameca, Quai des Gresillons 29, 92622 Gennevilliers Cedex, France

Media Contact

Dr. Manfred Schloesser idw

Weitere Informationen:

http://www.mpi-bremen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer