Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobielle Brennstoffzellen: Kupfer ist vorteilhafter als Kohlenstoff

26.06.2015

Eine neue Studie zeigt: Kupfer ist ein Material, das für die Anoden mikrobieller Brennstoffzellen und verwandter bioelektrochemischer Systeme hervorragend geeignet ist.

Mikrobielle Brennstoffzellen beruhen, darin ist sich die Forschung einig, auf einem hochinteressanten Prinzip für die Energiegewinnung. Sie nutzen lebende Mikroorganismen unmittelbar für die Erzeugung von elektrischem Strom.

Freie Elektronen, die bei Stoffwechselprozessen dieser Organismen entstehen, werden auf die Anode der Brennstoffzelle geleitet und setzen hier – unterstützt von einer geringen elektrischen Spannung – einen Stromkreislauf in Gang.

Damit solche Brennstoffzellen in größerem Umfang für die Stromerzeugung eingesetzt werden können, müssen ihre Anoden allerdings aus einem Material gefertigt sein, das einerseits möglichst kostengünstig ist und andererseits eine hohe elektrische Leitfähigkeit besitzt.

Bisher galt Kohlenstoff wegen seiner Verträglichkeit mit lebenden Organismen, seiner Stabilität und der relativ geringen Herstellungskosten als dasjenige Material, das am ehesten für die Anoden mikrobieller Brennstoffzellen infrage kommt. Doch die eingeschränkte Leitfähigkeit kohlenstoffhaltiger Fasern hat dazu geführt, dass mikrobielle Brennstoffzellen als eine im Prinzip reizvolle, aber im Hinblick auf größere technologische Anwendungen wenig ergiebige Energiequelle angesehen wurden.

Neue Untersuchungen, die ein Team um Prof. Dr. Andreas Greiner (Universität Bayreuth) und Prof. Dr. Uwe Schröder (TU Braunschweig) kürzlich in der Fachzeitschrift „Energy & Environmental Science“ vorgestellt hat, kommen nun aber zu einem unerwarteten Ergebnis: Kupfer ist ein Material, das für die Anoden mikrobieller Brennstoffzellen und verwandter bioelektrochemischer Systeme hervorragend geeignet ist.

Überraschend ist dieser Befund deshalb, weil Kupfer bisher als ein Metall eingestuft wurde, auf dessen Oberfläche sich auf Dauer keine Mikroorganismen ansiedeln können. Dabei hat man jedoch übersehen, dass diese antimikrobielle Wirkung sich nicht gegen elektrochemisch aktive Mikroorganismen auf Anoden richtet. Insbesondere Bakterien der Gattung Geobacter bilden auf Kupfer-Anoden eine stabile mikrobielle Schicht, die in der Regel dicker ist als die entsprechende Schicht auf den bisher üblichen Kohlenstoff-Fasern.

Dies gilt auch für die mikrobielle Schicht, die auf Anoden aus Gold oder Silber entsteht und hinsichtlich ihrer Dicke nur wenig hinter dem ‚Biofilm‘ auf Kupfer-Anoden zurückbleibt. Wie Kupfer galt auch Silber bisher als ein ausnahmslos antimikrobielles Metall. Es war insbesondere der Bayreuther Doktorand Markus Langner, der verschiedene Metalle daraufhin getestet hat, inwieweit sie als Materialien für Anoden geeignet sind.

Kupfer hat den entscheidenden Vorteil, dass es im Vergleich mit Kohlenstoff-Fasern eine erheblich höhere elektrische Leitfähigkeit hat. Zudem haben die Wissenschaftler in Bayreuth und Braunschweig errechnet, dass Kupfer-Anoden deutlich preisgünstiger sind. Dieser Unterschied wird erst dann klar erkennbar, wenn man nicht allein die Rohstoffpreise für Kupfer und Kohlenstoff, sondern zugleich die Materialmengen in Betracht zieht, die für funktionsfähige Anoden in mikrobiellen Brennstoffzellen tatsächlich benötigt werden. Weil Kupfer eine sehr gute elektrische Leitfähigkeit hat, können Kupfer-Anoden sehr dünn sein, so dass Material eingespart wird.

„Unsere Forschungsergebnisse zeigen, dass sich mit Kupfer-Anoden die Leistungsfähigkeit bioelektrochemischer Systeme erheblich steigern, deren Produktionskosten aber deutlich senken lassen“, erklärt Prof. Dr. Andreas Greiner. „Damit wächst die Chance, dass mikrobielle Brennstoffzellen in Zukunft häufiger für die Energiegewinnung eingesetzt werden und so einen Beitrag zur ‚Energiewende‘ leisten können.“

Veröffentlichung:

André Baudler, Igor Schmidt, Markus Langner, Andreas Greiner and Uwe Schröder,
Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems,
in: Energy & Environmental Science (2015),
DOI: 10.1039/c5ee00866b

Die Forschungsarbeiten wurden von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Kontakt:

Prof. Dr. Andreas Greiner
Lehrstuhl Makromolekulare Chemie II
Universität Bayreuth
D-95448 Bayreuth
Telefon: +49 (0)921 55 3399
E-Mail: andreas.greiner@uni-bayreuth.de

www.uni-bayreuth.de

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics