Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobielle Brennstoffzellen: Kupfer ist vorteilhafter als Kohlenstoff

26.06.2015

Eine neue Studie zeigt: Kupfer ist ein Material, das für die Anoden mikrobieller Brennstoffzellen und verwandter bioelektrochemischer Systeme hervorragend geeignet ist.

Mikrobielle Brennstoffzellen beruhen, darin ist sich die Forschung einig, auf einem hochinteressanten Prinzip für die Energiegewinnung. Sie nutzen lebende Mikroorganismen unmittelbar für die Erzeugung von elektrischem Strom.

Freie Elektronen, die bei Stoffwechselprozessen dieser Organismen entstehen, werden auf die Anode der Brennstoffzelle geleitet und setzen hier – unterstützt von einer geringen elektrischen Spannung – einen Stromkreislauf in Gang.

Damit solche Brennstoffzellen in größerem Umfang für die Stromerzeugung eingesetzt werden können, müssen ihre Anoden allerdings aus einem Material gefertigt sein, das einerseits möglichst kostengünstig ist und andererseits eine hohe elektrische Leitfähigkeit besitzt.

Bisher galt Kohlenstoff wegen seiner Verträglichkeit mit lebenden Organismen, seiner Stabilität und der relativ geringen Herstellungskosten als dasjenige Material, das am ehesten für die Anoden mikrobieller Brennstoffzellen infrage kommt. Doch die eingeschränkte Leitfähigkeit kohlenstoffhaltiger Fasern hat dazu geführt, dass mikrobielle Brennstoffzellen als eine im Prinzip reizvolle, aber im Hinblick auf größere technologische Anwendungen wenig ergiebige Energiequelle angesehen wurden.

Neue Untersuchungen, die ein Team um Prof. Dr. Andreas Greiner (Universität Bayreuth) und Prof. Dr. Uwe Schröder (TU Braunschweig) kürzlich in der Fachzeitschrift „Energy & Environmental Science“ vorgestellt hat, kommen nun aber zu einem unerwarteten Ergebnis: Kupfer ist ein Material, das für die Anoden mikrobieller Brennstoffzellen und verwandter bioelektrochemischer Systeme hervorragend geeignet ist.

Überraschend ist dieser Befund deshalb, weil Kupfer bisher als ein Metall eingestuft wurde, auf dessen Oberfläche sich auf Dauer keine Mikroorganismen ansiedeln können. Dabei hat man jedoch übersehen, dass diese antimikrobielle Wirkung sich nicht gegen elektrochemisch aktive Mikroorganismen auf Anoden richtet. Insbesondere Bakterien der Gattung Geobacter bilden auf Kupfer-Anoden eine stabile mikrobielle Schicht, die in der Regel dicker ist als die entsprechende Schicht auf den bisher üblichen Kohlenstoff-Fasern.

Dies gilt auch für die mikrobielle Schicht, die auf Anoden aus Gold oder Silber entsteht und hinsichtlich ihrer Dicke nur wenig hinter dem ‚Biofilm‘ auf Kupfer-Anoden zurückbleibt. Wie Kupfer galt auch Silber bisher als ein ausnahmslos antimikrobielles Metall. Es war insbesondere der Bayreuther Doktorand Markus Langner, der verschiedene Metalle daraufhin getestet hat, inwieweit sie als Materialien für Anoden geeignet sind.

Kupfer hat den entscheidenden Vorteil, dass es im Vergleich mit Kohlenstoff-Fasern eine erheblich höhere elektrische Leitfähigkeit hat. Zudem haben die Wissenschaftler in Bayreuth und Braunschweig errechnet, dass Kupfer-Anoden deutlich preisgünstiger sind. Dieser Unterschied wird erst dann klar erkennbar, wenn man nicht allein die Rohstoffpreise für Kupfer und Kohlenstoff, sondern zugleich die Materialmengen in Betracht zieht, die für funktionsfähige Anoden in mikrobiellen Brennstoffzellen tatsächlich benötigt werden. Weil Kupfer eine sehr gute elektrische Leitfähigkeit hat, können Kupfer-Anoden sehr dünn sein, so dass Material eingespart wird.

„Unsere Forschungsergebnisse zeigen, dass sich mit Kupfer-Anoden die Leistungsfähigkeit bioelektrochemischer Systeme erheblich steigern, deren Produktionskosten aber deutlich senken lassen“, erklärt Prof. Dr. Andreas Greiner. „Damit wächst die Chance, dass mikrobielle Brennstoffzellen in Zukunft häufiger für die Energiegewinnung eingesetzt werden und so einen Beitrag zur ‚Energiewende‘ leisten können.“

Veröffentlichung:

André Baudler, Igor Schmidt, Markus Langner, Andreas Greiner and Uwe Schröder,
Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems,
in: Energy & Environmental Science (2015),
DOI: 10.1039/c5ee00866b

Die Forschungsarbeiten wurden von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Kontakt:

Prof. Dr. Andreas Greiner
Lehrstuhl Makromolekulare Chemie II
Universität Bayreuth
D-95448 Bayreuth
Telefon: +49 (0)921 55 3399
E-Mail: andreas.greiner@uni-bayreuth.de

www.uni-bayreuth.de

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise