Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine mikro-RNA als Schlüsselregulator von Lernfähigkeit und der Alzheimer-Erkrankung

26.09.2011
Wissenschaftler identifizieren ein RNA-Molekül als möglichen Angriffspunkt für neue Alzheimer-Therapien

Proteine sind die molekularen Maschinen der Zelle. Sie transportieren Stoffe, spalten Produkte oder leiten Signale weiter – ihnen galt lange Zeit die volle Aufmerksamkeit der molekularbiologischen Forschung.

In den letzten zwei Jahrzehnten aber hat eine weitere Klasse von Molekülen eine steile Karriere hinter sich gebracht: Kleine RNA-Moleküle, zu denen auch die mikro-RNAs gehören. Mikro-RNAs, so weiß man heute, nehmen in der Regulation der Zellfunktion eine Schlüsselrolle ein.

"Eine mikro-RNA reguliert die Produktion von schätzungsweise 300-400 Proteinen. Wir sehen diese Molekülklasse als eine Art Schalter, um die Zellen koordiniert von einem Zustand in einen anderen zu bringen", erklärt Prof. Dr. André Fischer, Wissenschaftler am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) und Sprecher des DZNE-Standorts Göttingen. Er und sein Team haben eine mikro-RNA identifiziert, die Lernprozesse reguliert und bei der Alzheimer-Erkrankung vermutlich eine zentrale Rolle spielt. In Maus-Modellen der Alzheimer-Erkrankung, so zeigten die Forscher, liegt zu viel der mikro-RNA "miRNA 34c" vor, eine Herabsenkung der RNA kann die Lernfähigkeit der Mäuse wieder steigern. Damit haben die Wissenschaftler ein neues Zielmolekül identifiziert, das für die Diagnose und Therapie von Alzheimer von Bedeutung sein könnte. Die Forschungsarbeit entstand in Kooperation mit Wissenschaftlern des European Neuroscience Institutes Göttingen, der Universität Göttingen, des DZNE-Standorts München und Forschern aus der Schweiz, USA und Brasilien.

Identifiziert wurde miRNA 34c in einem hochkomplexen Verfahren namens "massive parallel sequencing". Fischer und seine Kollegen erfassten mit dieser Technologie den Gesamtbestand der RNA im Hippocampus – der Lernregion des Gehirns – und verglichen diesen mit dem RNA-Bestand des gesamten Gehirns. miRNA 34c, so zeigten sie, ist im Hippocampus angereichert – vor allem in einer Zeitpanne von einigen Stunden nach einer Lernphase. "Wir vermuten, dass Mikro-RNA 34c gebraucht wird, um viele Genprodukte, die beim Lernen eingeschaltet werden, wieder abzuschalten", so Fischer. Zu viel miRNA 34c würde dann zu einer Lernblockade führen – und genau dies zeigte sich in Experimenten. In alten Mäusen, die nicht mehr so gut lernen, wie ihre jüngeren Artgenossen, war in der Tat zu viel miRNA 34c vorhanden. Auch in Mäusen, die in der Forschung als Modelle der Alzheimer-Erkrankung genutzt werden, war der miRNA 34c-Pegel zu hoch. Diese Mäuse tragen eine Genmutation, die auch in Menschen Alzheimer auslösen kann, und zeigen Störungen der Gedächtnisfunktion. Darüber hinaus scheint nicht nur in Mäusen miRNA34c eine Rolle zu spielen – auch in Gehirnen von Alzheimer-Patienten, so zeigten Fischer und seine Kollegen, ist miRNA 34c angereichert.

Dass miRNA 34c auch wirklich ursächlich an der Pathogenese der Alzheimer-Erkrankung und an Gedächtnisstörungen beteiligt ist, zeigten die Forscher in zwei weiteren Mausexperimenten. Wird der miRNA 34c-Pegel in normalen Mäusen künstlich angehoben, führt dies zu Gedächtnisstörungen bei den Tieren. Zum anderen, so zeigten Fischer und seine Kollegen, lässt sich durch ein Herabsetzen des miRNA 34c-Pegels die Lernfähigkeit in den Mausmodellen der Alzheimer-Erkrankung und in alten Mäusen wieder normalisieren. "Neurodegenerative Erkrankungen wie Alzheimer gehen mit vielen Faktoren einher. Wir hoffen, mit miRNA 34c einen der wichtigen Vermittler der Pathogenese getroffen zu haben", sagt Fischer, "Micro-RNA 34c wäre damit ein guter Kandidat für die Entwicklung von Medikamenten gegen Alzheimer".

Originalpublikation:
Athanasios Zovoilis, Hope Y Agbemenyah, Roberto C Agis-Balboa, Roman M Stilling,Dieter Edbauer, Pooja Rao, Laurent Farinelli, Ivanna Delalle, Andrea Schmitt, Peter Falkai, Sanaz Bahari-Javan, Susanne Burkhardt, Farahnaz Sananbenesi1 & Andre Fischer. Micro-RNA-34C is a novel target to treat dementias. EMBO J. advance online publication 23 September 2011; doi:10.1038/emboj.2011.3272011.327
Kontaktinformation:
Prof. Dr. André Fischer
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
c/o Abteilung Psychiatrie and Psychotherapie
Universitätsmedizin Göttingen
Tel.: +49 (0) 551 / 3910378
Email: andre.fischer@dzne.de
Dr. Katrin Weigmann
Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Tel.: +49 (0) 228 / 43302-263
Mobil: +49 (0) 173 / 5471350
Email: katrin.weigmann@dzne.de

Daniel Bayer | idw
Weitere Informationen:
http://bit.ly/r9j4n1
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit