Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MHH-Forscher klären fundamentalen Mechanismus der Zellteilung auf

25.07.2011
Protein Fbxw5 steuert Centrosomen-Verteilung / Prozess für genetische Stabilität wichtig

Forscher der Medizinischen Hochschule Hannover (MHH) haben analysiert, wie Zellen es schaffen, ihr Erbgut bei der Zellteilung gleichmäßig auf beide Tochterzellen zu verteilen. Die gleichmäßige Aufteilung ist für die sogenannte genetische Stabilität der Zelle wichtig: Fehlt sie, kann Krebs entstehen.

Die Forscher Professor Dr. Nisar Malek, Geschäftsführender Oberarzt der MHH-Klinik für Gastroenterologie, Hepatologie und Endokrinologie und Arbeitsgruppenleiter im MHH-Institut für Molekularbiologie, und seine frühere Mitarbeiterin Dr. Anja Puklowski, die jetzt in Biberach tätig ist, veröffentlichten ihre Ergebnisse in der renommierten Fachzeitschrift Nature Cell Biology.

Die Forscher untersuchten, wie die Zelle es schafft, ihre Centrosomen nur einmal pro Zellteilungszyklus zu verdoppeln. Centrosomen sind dafür verantwortlich, dass sich Chromosomen während der Zellteilungsphase gleichmäßig auf beide Tochterzellen verteilen. Hierfür bilden die Centrosomen mikroskopisch kleine Fasern aus, die sogenannten Spindeln, die sich an die Chromosomen anheften und diese zu den entgegen gesetzten Polen der Zelle ziehen.

Um eine gleichmäßige Verteilung auf die zwei Tochterzellen zu ermöglichen, benötigt die Zelle zwei Centrosomen. Wenn sich mehr als zwei Centrosomen bilden, besteht die Möglichkeit, dass auch mehr als zwei Spindeln entstehen und die Chromosomen nicht mehr gleichmäßig verteilt werden. Das kann zur sogenannten genetischen Instabilität beitragen. Genetische Instabilität ist die Grundlage der Entstehung von Krebszellen. Es wird bereits seit langem vermutet, dass Centrosomen-Duplikationsfehler dabei eine entscheidende Rolle spielen könnten.

Die Arbeit erklärt, wie Zellen es schaffen, ihre Centrosomen nur einmal pro Teilungszyklus zu verdoppeln. „Wir konnten zeigen, dass die Zelle hierfür das spezifische Protein Fbxw5 verwendet. Dieses kontrolliert den Abbau eines anderen Proteins, HsSAS-6, das für die Entstehung des zweiten Centrosoms notwendig ist. Fbxw5 stellt sicher, dass HsSAS-6 nur einmal pro Teilungszyklus die Bildung des zweiten Centrosoms induziert und dann sofort abgebaut wird“, erläutert Professor Malek. Fehlt Fbxw5, entstehen multiple Centrosomen, was zu genetisch instabilen Zellen führt. „Die Frage ist nun, inwieweit dieser fundamentale Prozess der Zellteilung in Tumorzellen gestört ist und ob sich hier Ansatzpunkte für neue Tumortherapien finden lassen“, sagt Professor Malek.

Weitere Informationen erhalten Sie bei Professor Dr. Nisar Malek, Telefon (0511) 532-4585, malek.nisar@mh-hannover.de.

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise