Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metallorganische Verbindungen als neue Pharmaka? Cobalthaltiger Aspirin-Komplex mit Antitumor-Potenzial

13.01.2009
Aspirin plus Co

Trotz beachtlicher Fortschritte in der modernen Chemotherapie herrscht nach wie vor ein großer Bedarf an innovativen Antitumorwirkstoffen. Ein neuer Ansatz ist die Modulierung der pharmakologischen Eigenschaften etablierter Wirkstoffe durch metallorganische Fragmente.

Wie ein Team von Wissenschaftlern aus Berlin, Bochum, Innsbruck (Österreich) und Leiden (Niederlande) in der Zeitschrift Angewandte Chemie berichtet, zeigen beispielsweise Cobalt-Aspirin-Komplexe ein interessantes Potenzial als Zytostatika.

Die meisten der heute verwendeten Arzneistoffe sind rein organische Verbindungen. Stimuliert durch den enormen Erfolg der anorganischen Verbindung Cisplatin in der Tumortherapie ist das Interesse an Metallkomplexen gestiegen. Metallkomplexe können in Zellen Reaktionen eingehen, die mit konventionellen organischen Substanzen nicht realisierbar sind.

Aspirin (Acetylsalicylsäure, ASS) zählt zur Gruppe der nichtsteroidalen Antirheumatika (NSAR), die v.a. entzündungshemmend und schmerzstillend wirken. Die pharmakologischen Effekte der NSAR beruhen auf der Hemmung von Enzymen der Cyclooxygenase-Famile (COX). Diese Enzyme spielen aber nicht nur eine zentrale Rolle bei Entzündungsprozessen, sondern scheinen auch beim Wachstum von Tumoren involviert zu sein. NSAR rücken damit als neuartige Zytostatika in den Blickpunkt. Die Antitumor-Wirkung ließe sich im Fall von Aspirin möglicherweise verbessern, indem es an ein metallorganisches Fragment gebunden wird.

Im Rahmen der durch die Deutsche Forschungsgemeinschaft (DFG) geförderten Forschergruppe "Biologische Funktion von Organometallverbindungen" stellte das Team fest, dass "Co-ASS", ein Hexacarbonyldicobalt-Aspirin-Komplex, die COX-Aktivität in anderer Weise inhibiert als Aspirin. Während die Wirkung von Aspirin auf der Acetylierung eines Serinrestes im aktiven Zentrum der COX beruht, greift Co-ASS diese Seitenkette nicht an, acetyliert dafür aber mehrere andere Stellen. Möglicherweise wird dadurch der Eingang zum aktiven Zentrum des Enzyms blockiert. Die Folge ist ein verändertes Wirkungsspektrum.

In Experimenten mit Zebrafischembryos konnte nachgewiesen werden, dass Co-ASS nicht nur das Zellwachstum, sondern im Gegensatz zu Aspirin auch die Entstehung kleiner Blutgefäße (Angiogenese) hemmt. Tumore sind auf eine Versorgung durch neugebildete Blutgefäße angewiesen und können durch eine Hemmung der Angiogenese regelrecht ausgehungert werden. Co-ASS moduliert zudem auch weitere tumorrelevante Stoffwechselwege. So wird durch den Komplex das Enzym Caspase aktiviert, das in Prozesse involviert ist, die zur Apoptose (programmierter Zelltod) führen.

Angewandte Chemie: Presseinfo 01/2009

Autor: Ingo Ott, Freie Universität Berlin (Germany), http://userpage.fu-berlin.de/~ottingo/

Angewandte Chemie 2009, 121, No. 6, 1180-1184, doi: 10.1002/ange.200803347

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://userpage.fu-berlin.de/~ottingo/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik