Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Wissenschaftler zeigen, wie die Entwicklung von Blutstammzellen gesteuert wird

05.10.2009
Ob aus einer Blutstammzelle bei der Zellteilung erneut eine Stammzelle entsteht, oder ob sich aus ihr die verschiedenen Blutzellen entwickeln, hängt von einem chemischen Vorgang ab, der in der Fachsprache DNA-Methylierung genannt wird.

Das haben jetzt Forscherinnen aus dem Labor von Dr. Frank Rosenbauer vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch in Zusammenarbeit mit dem Labor von Prof. Sten Eirik W. Jacobsen (Universität Lund, Schweden und Universität Oxford, England) zeigen können. Weiter wiesen sie nach, dass die DNA-Methylierung auch bei Krebsstammzellen eine entscheidende Rolle spielt (Nature Genetics, online, doi:10.1038/ng.463)*.

Eine Gruppe von drei Enzymen, die DNA-Methyltransferasen (Dnmt), kontrolliert das Anhängen von Methylgruppen an die DNA (DNA-Methylierung). Eines dieser Enzyme, das Dnmt1, ist verantwortlich dafür, dass die Markierungen mit den Methylgruppen, die DNA-Methylierungsmuster, erhalten bleiben. Die Verteilung der Methylgruppen auf der DNA entscheidet, welche Gene abgelesen und welche blockiert werden. Forscher sprechen in diesem Zusammenhang von epigenetischen Informationen, im Gegensatz zu genetischen Informationen.

Ob die DNA-Methylierung allerdings eine besondere Rolle in der Kontrolle von Blutstammzelleigenschaften spielt, war bisher unklar. Aus Blutstammzellen bilden sich sämtliche Blutzellen des Körpers. Da Blutzellen nur eine begrenzte Lebensdauer haben, muss der Körper immer wieder neue Blutzellen bilden. Das Reservoir dafür bilden die Blutstammzellen. Um zu sehen, welche Aufgabe die DNA-Methylierung bei Blutstammzellen hat, schalteten die beiden Doktorandinnen Ann-Marie Bröske und Lena Vockentanz aus dem MDC-Forschungslabor von Dr. Rosenbauer in Mäusen das Enzym Dnmt1 aus. Es zeigte sich, dass die Tiere aufgrund einer komplett gestörten Stammzellfunktion nicht lebensfähig waren.

Sorgten die Forscherinnen hingegen dafür, dass die Blutstammzellen noch etwas Dnmt1 bildeten, blieben die Tiere am Leben, die Stammzellen büßten aber ihr Potential der Selbsterneuerung ein. Auch konnten die Blutstammzellen keine B-Zellen und nur eingeschränkt T-Zellen (Blutzellen des lymphatischen Systems und wichtige Zellen des Immunsystems) bilden, dafür aber beispielsweise rote Blutzellen, die für den Sauerstofftransport wichtig sind und zu den Blutzellen des myeloerythoiden Systems gezählt werden. Mit anderen Worten, die Höhe der DNA-Methylierung reguliert, welche Blutzelllinien sich aus einer Blutstammzelle entwickeln oder nicht.

Krebsstammzellen
Methylierungsvorgänge spielen auch eine Rolle bei sehr vielen Krebserkrankungen. Die DNA-Methylierung durch das Enzym Dnmt1 kontrolliert, wie die MDC-Forscherinnen weiter zeigen konnten, auch die Entwicklung von Blutkrebsstammzellen. Ist die DNA-Methylierung sehr gering, können sich die Krebsstammzellen nur eingeschränkt selbst erneuern. Außerdem ist die Bildung von Leukämiezellen der B-Zell-Linie (akute B-Zell-Leukämie -ALL) blockiert.

Die Frage ist, ob erkrankte Stammzellen möglicherweise durch eine Blockade des Enzyms Dnmt1, ausgeschaltet werden können. Das will Dr. Rosenbauer in einem weitergehenden Projekt mit seinen Mitarbeiterinnen genauer untersuchen.

*DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
Ann-Marie Bröske1*, Lena Vockentanz1*, Shabnam Kharazi2, Matthew R. Huska1, Elena Mancini3, Marina Scheller1, Christiane Kuhl1, Andreas Enns1, Marco Prinz4, Rudolf Jaenisch5, Claus Nerlov3, Achim Leutz1, Miguel A. Andrade-Navarro1, Sten Eirik W. Jacobsen2,6 and Frank Rosenbauer1
1 Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
3 European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Italy
4 Department of Neuropathology, University of Freiburg, Freiburg, Germany
5 The Whitehead Institute, 9 Cambridge Center, Cambridge, MA, USA
6 Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England.

*These authors contributed equally to this work

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/
http://www.medfak.lu.se/stemcellcenter/hemat_stc_lab.htm

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie