Lösung ohne Wasser

Stickstoffmonoxid, chemisch kurz NO, ist ein wichtiger Botenstoff in beinahe allen Organismen: Bei der Regulation des Blutdrucks, der Immunantwort und der Wundheilung spielt es eine zentrale Rolle. „Damit ist NO als Wirkstoff zur Behandlung von Krankheiten hochinteressant“, sagt Prof. Dr. Alexander Schiller von der Friedrich-Schiller-Universität Jena.

Allerdings nur, so betont der Chemiker, wenn es gezielt an die Wirkorte im menschlichen Körper transportiert werden kann. Und genau das sei bislang problematisch, handelt es sich bei NO doch um ein flüchtiges Gas, das in zu hoher Dosierung toxisch ist.

Doch die Chemiker um Prof. Schiller sind der Lösung dieses Problems nun einen wichtigen Schritt nähergekommen. Die Forscher arbeiten bereits seit einiger Zeit an Metallkomplexen, die per eingebautem „Lichtschalter“ – durch gezielte Bestrahlung mit UV- und blauem Licht – NO freisetzen können. Wie die Forscher in der Fachzeitschrift „Particle & Particle Systems Characterization“ schreiben, ist es ihnen jetzt gelungen, diese Metallkomplexe erstmals in Nanopartikel zu verpacken (DOI: 10.1002/ppsc.201200067). „Damit ist der Weg frei, eine für medizinische Anwendungen praktikable Darreichungsform des Wirkstoffs zu entwickeln“, schätzt Prof. Schiller ein.

Metallkomplexe in Form von Nanopartikeln zu verpacken ist heute immer noch eine große Herausforderung. Der Grund: „Die NO-freisetzenden Metallkomplexe sind nur extrem schwer in Wasser und in unpolaren Lösungsmitteln löslich“, erläutert Prof. Schiller.
Für dieses Problem hat das Team um Prof. Schiller, gemeinsam mit Partnern des Max-Planck-Instituts für Polymerforschung in Mainz, eine Lösung gefunden. „Wir verzichten ganz auf Wasser und setzen als Alternative sogenannte fluorierte Lösungsmittel ein“, so Schiller. Diese einfach klingende Idee ließ sich allerdings nur dank einer völlig neuen Technologie zur Präparation von Nanopartikeln umsetzen. Wasserfreie Emulsionen erlauben nun die Verkapselung des NO-freisetzenden Metallkomplexes in Nanopartikeln aus synthetischen Polymeren oder Proteinen. In ersten Labortests haben sich die so entstehenden Partikel als NO-freisetzende Vehikel bereits bewährt. Nun komme es darauf an, sowohl die NO-Freisetzung als auch die Beladung der zwischen 100 und 200 Nanometer kleinen Partikel mit dem Metallkomplex noch weiter zu optimieren.

Doch auch das bisher erzielte Ergebnis hat die Fachwelt bereits überzeugt: Die Herausgeber des Journals, in dem die Jenaer und Mainzer Forscher ihre jüngsten Ergebnisse vorgestellt haben, wählten den Artikel für das Titelbild aus.

Original-Publikation:
Bohlender C et al. Unconventional non-aqueous emulsions for the encapsulation of a phototriggerable NO-donor complex in polymer nanoparticles. Particle & Particle Systems Characterization 2013, 30, 138-142, DOI: 10.1002/ppsc.201200067

Kontakt:
Prof. Dr. Alexander Schiller (Jun.-Prof.)
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstraße 8, 07743 Jena
Tel.: 03641 / 948113
E-Mail: alexander.schiller[at]uni-jena.de

Media Contact

Dr. Ute Schönfelder idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer