Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live und in Farbe: Zellen bilden Gewebe

12.05.2015

Wie haften die Zellen eines Gewebes aneinander? Der Antwort auf diese Frage ist ein Pharmakologenteam von der Philipps-Universität Marburg jetzt nähergekommen: Die Wissenschaftlerinnen und Wissenschaftler um Professor Dr. Robert Grosse fanden heraus, dass das Molekül Formin-like 2 (FMNL2) gebraucht wird, um Zellen miteinander zu verbinden. Die Arbeitsgruppe berichtet über ihre Ergebnisse in der neuesten Ausgabe des Wissenschaftsmagazins „Journal of Cell Biology“ (11. Mai 2015).

„Unversehrte Deckgewebe – sogenannte Epithelien – sind lebenswichtig“, betont Studienleiter Grosse; sie kleiden zum Beispiel die Blutgefäße aus. Die korrekte Bildung dieser Gewebe ist auch medizinisch von Belang, hebt der Pharmakologe hervor: „So entstehen Krebserkrankungen oftmals aus geschädigten Epithelien.“


Ohne Gerüst kein Zusammenhalt: Schaltet man das Protein Formin-like 2 aus, so bilden die betroffenen Epithelzellen (unten) keine Hohlräume, anders als unbehandelte Zellen (oben).

(Abb.: Autoren)

Damit flächige Deckgewebe entstehen, bilden sich zwischen den einzelnen Zellen Haftkomplexe (adherens junctions, AJ), die mehrere Proteine umfassen. „Im intakten Gewebe sind diese Zell-Zell-Kontakte mit dem Zellskelett verbunden, das aus Aktin besteht“, erklärt Grosse; „aber wo dieses Aktin herkommt und wie es reguliert ist, war bisher nicht vollständig geklärt.“

Um die offenen Fragen zu beantworten, experimentierten die Autoren mit Zellen unter natürlichen Wachstumsbedingungen und beobachteten die beteiligten Moleküle in Echtzeit. Das Team verwendete für seine Studien ein Substrat, das die dreidimensionale Ausbreitung des Gewebes erlaubt.

Grosse und seine Mitarbeiter identifizierten einen Faktor, der an den Kontaktstellen zwischen Epithelzellen des menschlichen Körpers dafür sorgt, dass Gerüste aus Aktin entstehen: Formin-like 2 (FMNL2). Wie die Autoren ermittelten, reichert sich FMNL2 an den Kontaktstellen an, durch die sich Zellen zu einem Epithel verbinden.

Welche Funktion hat FMNL2 für die Bildung des Aktingerüstes? Dies untersuchte das Team, indem es das FMNL2-Gen ausschaltete – das Ergebnis: Die Aktin-Ketten, aus denen das Gerüst an den Anheftungsstellen entsteht, sind unterbrochen. Schließt das gebildete Epithel einen Hohlraum ein, so ist dieser missgebildet. Ein künstliches FMNL2-Protein kann die Funktion des fehlenden natürlichen Moleküls ersetzen.

Die Wissenschaftlerinnen und Wissenschaftler fanden auch heraus, dass FMNL2 mit den Bestandteilen des Haftkomplexes zusammenwirkt, zum Beispiel mit den Proteinen E-Cadherin und Rac1. Außerdem wollten die Autoren wissen, wer die Aktivität von FMNL2 steuert.

Die Arbeitsgruppe griff hierfür auf eine Methode zurück, die Grosses Labor kürzlich benutzt hat, um Moleküle mittels Licht gezielt zu aktivieren. Dabei zeigte sich – live und in Farbe –, dass FMNL2 als auch Aktin-Filamente sich innerhalb kürzester Zeit an den Kontaktzonen der Zellen anreichert, nachdem Rac1 angeschaltet wird (siehe Video auf http://www.uni-marburg.de/aktuelles/news/2015b/0511a).

„Das Protein Formin-like 2 ist in vielen Epithelien des menschlichen Körpers vorhanden“, erklären die Autoren zur Bedeutung ihrer Resultate. Die Fehlbildung solcher Gewebe kann zu Krebs führen, etwa zu Brustkrebs. „Wie FMNL2 mit dem Haftkomplex im Detail zusammenwirkt und welche weiteren Moleküle die Haftung zwischen Zellen beeinflussen, muss in künftigen Untersuchungen geklärt werden“, schreibt das Wissenschaftlerteam.

Professor Dr. Robert Grosse ist Direktor des Pharmakologischen Instituts am Fachbereich Medizin der Philipps-Universität und leitet einen Arbeitsbereich am Biochemisch-Pharmakologischen Centrum der Philipps-Universität. Die zugrunde liegende Forschungsarbeit wurde durch die Deutsche Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms SPP 1782 finanziell gefördert.

Originalveröffentlichung: Katharina Grikscheit & al.: Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1, J. Cell Biol. 2015

Video: Zwei menschliche Zellen produzieren Aktin, das mittels eines farbigen Markers gekennzeichnet ist (grünes Signal). Durch Licht wird der Faktor Rac1 aktiviert. Dies führt zu einer hohen Motilität in den Zellen und zu einer schnellen Formation von Zell-Zell-Kontakten mit hohem Gehalt von Aktin. (http://www.uni-marburg.de/aktuelles/news/2015b/0511a, Aufnahme: AG Grosse)

Weitere Informationen:
Ansprechpartner: Professor Dr. Robert Grosse,
Pharmakologisches Institut und Biochemisch-Pharmakologisches Centrum Marburg
Tel.: 06421 28-65001 und -65001 (Sekretariat)
E-Mail: robert.grosse@staff.uni-marburg
Homepage: http://www.bpc-marburg.de/cytoskeletal-signaling-grosse-lab/

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie