Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht im Maschinenraum eines Helferproteins

21.06.2016

Bewegungen in Proteinen mit hoher Orts- und Zeitauflösung zu beobachten: Das ermöglicht eine neue Technik, die Wissenschaftler der Universität Würzburg entwickelt haben. Sie liefern damit neue Einblicke in den Funktionsmechanismus ganz spezieller Proteine.

Proteine zählen zu den wichtigsten Funktionsträgern des Lebens. Gebildet aus langen Ketten von Aminosäuren, falten sie sich in hochgeordnete dreidimensionale Strukturen, ähnlich wie ein Origami-Puzzle. Gefaltete Proteine sind allerdings nicht starr, sondern veränderlich und in ständiger Bewegung. Somit können sie als molekulare Maschinen eine Vielzahl von Funktionen ausführen, die in ihrer Gesamtheit das Leben ausmachen.


Die Kombination aus Farbstoffmolekül und Tryptanophan liefert bisher ungekannte Einblicke in die Bewegungen des Proteins Hsp90.

Grafik: Hannes Neuweiler

Gedrängel in der Enge führt zu Fehlern

Lebende Zellen sind voll von solchen Proteinen, die sich während der Faltung und beim Ausführen ihrer Funktionen jedoch häufig ins Gehege kommen. „Kommt es bei diesem Gedränge zu Fehlern in der Faltung oder in der Funktion, können diese eine Reihe von Erkrankungen bis hin zu Krebs auslösen“, erklärt Dr. Hannes Neuweiler.

Neuweiler ist Gruppenleiter am Lehrstuhl für Biotechnologie & Biophysik der Universität Würzburg. Zusammen mit seiner Arbeitsgruppe hat er eine Technik entwickelt, durch die Proteine bei der Arbeit mit hoher Orts- und Zeitauflösung beobachtet werden können. In der aktuellen Ausgabe der Fachzeitschrift Nature Chemical Biology stellt die Gruppe die Ergebnisse ihrer Arbeit vor.

Neuweiler und sein Team haben sich für diese Arbeit auf sogenannte Helferproteine – in der Fachsprache Chaperone genannt, von englisch: „begleiten, bemuttern“ – konzentriert. „Chaperone greifen sich andere Proteine, die Hilfe benötigen. Sie helfen ihren ‚Patienten‘ bei der Faltung, aktivieren sie, indem sie ihre Form verändern, und verhindern unerwünschte Zusammenlagerungen“, erklärt Neuweiler.

Ein Hitzeschockprotein mit Heilkunst

Eine außergewöhnliche Variante solcher Helferproteine ist das Hitzeschockprotein Hsp90: Es zählt zu den am häufigsten vorkommenden Proteinen in der lebenden Zelle, wo es sich um eine sehr große Zahl von „Patienten“ kümmert, die unterschiedlichste Formen und Funktionen haben. „Die Heilkunst von Hsp90 ist jedoch ein Mysterium. Sein genauer Funktionsmechanismus ist bislang nur teilweise verstanden“, sagt Neuweiler.
Bekannt war: Das Chaperon ähnelt einer molekularen Klammer, die sich öffnet und schließt, während es seinen Patienten verarztet. Mit Hilfe kristallographischer Methoden und der Technik der Röntgenbeugung haben Forscher in der Vergangenheit atomar aufgelöste Strukturen von Hsp90 ermittelt, die Schnappschüsse aus dem Maschinenraum des Helferproteins zeigen. „Bis zum heutigen Tage war es jedoch nicht möglich, diese Mechanik von Hsp90 bei der Arbeit in wässriger Lösung zu beobachten“, so Neuweiler. Es fehlten Methoden, die solch lokale Bewegungen in Proteinen sichtbar machen können.

Ein Leuchtfeuer zeigt Strukturveränderungen

Das hat sich jetzt geändert: Die Würzburger Wissenschaftler haben hochauflösende Fluoreszenzsonden entwickelt, mit deren Hilfe es möglich ist, diese Bewegungen in Hsp90 zu beobachten. Wie ein Leuchtfeuer, das bei Strukturänderung ein- und ausgeschaltet wird, zeigen die Sonden an, wann und auf welcher Zeitskala eine Bewegung in der molekularen Maschine stattfindet.

Hierbei machen sich die Forscher das Phänomen der Fluoreszenzlöschung durch photoinduzierten Elektronentransfer (PET) zu Nutze. Das Prinzip: Synthetische Farbstoffmoleküle, die unter normalen Umständen Licht aussenden, werden bei Kontakt mit der natürlich vorkommenden Aminosäure Tryptophan durch eine photochemische Reaktion ausgeschaltet. Neuweiler und Mitarbeiter haben solche Farbstoffmoleküle nun an ausgewählte Stellen in Hsp90 in die Nachbarschaft von Tryptophan eingebracht und das Chaperon dadurch mit Bewegungsmeldern ausgestattet. Die Ergebnisse der Arbeit zeigen, dass sich lokale Strukturelemente in Hsp90 synchron bewegen, während die molekulare Klammer sich schließt. Das kooperierende Protein Aha1, ein sogenanntes Co-Chaperon, legt den Hebel eines ausgewählten Strukturelements von Hsp90 in einer frühen Phase um und beschleunigt somit den Vorgang.

In zukünftigen Arbeiten wollen die Wissenschaftler nun mit Hilfe der neuen Fluoreszenztechnik weitere Strukturänderungen in Hsp90 und die Wirkungsweise anderer Co-Chaperone beleuchten. Von den Untersuchungen am Einzelmolekül mit Hilfe sensitiver bildgebender Verfahren erwarten sie neue Einblicke in die Mechanik von Helferproteinen und damit auch Erkenntnisse über die Entstehung von Krankheiten.

“Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism”, Andrea Schulze, Gerti Beliu, Dominic A. Helmerich, Jonathan Schubert, Laurence H. Pearl, Chrisostomos Prodromou & Hannes Neuweiler. Nature Chemical Biology

Kontakt

Dr. Hannes Neuweiler, T: +49 931 31-83872, E-Mail: hannes.neuweiler@uni-wuerzburg.de

Weitere Informationen:

http://dx.doi.org/10.1038/nchembio.2111 Zur Originalpublikation

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften