Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliches Thymusgewebe lässt Immunzellen reifen

30.03.2012
Vier Signalstoffe steuern die Umwandlung von T-Zellen

In der Immunabwehr spielt der Thymus eine Schlüsselrolle, denn hier reifen Abwehrzellen des Immunsystems heran, die so genannten T-Lymphozyten (T-Zellen). Aus Vorläuferzellen, die aus dem Knochenmark einwandern, entstehen unterschiedliche T-Zelltypen, die auf bestimmte Aufgaben spezialisiert sind.


Fluoreszenzmikroskopische Aufnahme von funktionslosem Thymusgewebe (grün gefärbte Zellen). Hämatopoetische Zellen (rot) wandern ein, wenn das Thymusgewebe zwei bestimmte Signalstoffe bildet (blau: Zellkerne). © MPI für Immunologie und Epigenetik

Forscher am Max-Planck-Institut für Immunologie und Epigenetik in Freiburg haben nun im Mausembryo ein künstliches Thymusgewebe erzeugt, um darin Abwehrzellen heranreifen zu lassen. Dadurch haben sie herausgefunden, welche Signalstoffe die Umwandlung der T-Zellen steuern. Die Ergebnisse sind ein erster Schritt auf dem Weg zur Herstellung künstlicher Thymusdrüsen, die das Organ bei Schädigung ersetzen könnten.

Als Teil der Immunantwort sind die T-Zellen dafür zuständig, Eindringlinge und entartete Zellen im Körper aufzuspüren und zu vernichten. Ihre Vorläufer bilden sich im Knochenmark. Angelockt von chemischen Signalen wandern sie von dort aus in den Thymus ein. Das kleine Organ oberhalb des Herzens ist in Nischen gegliedert, die den Zellen die für ihre Entwicklungsschritte jeweils notwendigen Umgebungsbedingungen bieten. Hier wandeln sie sich in verschiedene T-Zelltypen um, die schließlich in den Körper entlassen werden.

Entscheidend für die Reifung der Vorläuferzellen sind Signalstoffe, die in der jeweiligen Nische aktiv sind. So bestimmt eine Kombination aus vier Proteinen − der beiden Chemokine Ccl25 und Cxcl12, des Cytokins Scf und des sogenannten Notch-Liganden DLL4, ob Vorläuferzellen in eine bestimmte Nische des Thymus gelockt werden und wie sie sich dort weiterentwickeln. Welche Kombination der Faktoren für die Entwicklung eines bestimmten Zelltyps verantwortlich ist, war bisher jedoch noch nicht bekannt.

Forschern des Freiburger Max-Planck-Instituts ist es nun gelungen, den Steuerungsmechanismus aufzuklären. „Wie sich die Vorläuferzellen weiterentwickeln, hängt von überraschend wenigen Faktoren ab und folgt einfachen Regeln“, sagt Thomas Boehm. „So reichen beispielsweise nur zwei Faktoren, nämlich Cxcl12 und DLL4 aus, damit die T-Zell-Vorläufer die Hälfte ihrer Entwicklung zurücklegen. Von da aus sind es nur noch wenige Schritte bis hin zu zwei Typen von fertigen T-Zellen mit den Oberflächenmolekülen CD4 und CD8. Früher dachte man, die Steuerung sei viel komplizierter“, erklärt der Wissenschaftler.

Um zu testen, wie sich die unterschiedlichen Kombinationen der vier genetischen Faktoren auf die Reifung und Differenzierung der Immunzellen auswirken, haben die Forscher im Mausembryo eine künstliche Thymusumgebung geschaffen. Dazu haben sie zunächst den Transkriptionsfaktor Foxn1 ausgeschaltet. Fox1 ist dafür verantwortlich, dass all diejenigen Gene auf der Erbsubstanz abgelesen werden, die für die vier entscheidenden Proteine kodieren. Foxn1 ist daher eine Art „Generalschalter“, mit dem sich alle relevanten Gene auf einmal ausknipsen lassen. Nachdem die Forscher auf diese Weise ein funktionsloses Thymusgewebe erzeugt hatten, schalteten sie anschließend nacheinander die Gene einzeln oder in Kombination wieder an und beobachteten, welchen Effekt dies auf die Entwicklung der Vorläuferzellen hatte.

Interessanterweise konnten die Wissenschaftler auch die Vorläufer von B-Lymphozyten und von Mastzellen in die künstliche Thymusumgebung locken und sie dort reifen lassen. Diese beiden Immunzelltypen entwickeln sich normalerweise ausschließlich im Knochenmark. Indem die Forscher den Notch-Liganden DLL4 ausgeschaltet ließen, konnten sie die Reifung dieser Zellen auch im künstlichen Thymusgewebe steuern. Dies legt nahe, dass im Knochenmark ähnliche genetische Faktoren wirken wie im Thymus.

„Unsere Ergebnisse sind nicht nur für das Verständnis grundlegender immunologischer Prozesse relevant“, sagt Thomas Boehm. „Sie stellen auch erste Schritte auf dem Weg zur Herstellung künstlicher Thymi dar. Damit können wir eines Tages vielleicht Menschen helfen, deren Thymus beispielsweise durch eine Tumorbehandlung geschädigt wurde“, hofft der Wissenschaftler.

Ansprechpartner

Dr. Thomas Boehm
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-329
Fax: +49 761 5108-323
E-Mail: boehm@immunbio.mpg.de
Originalpublikation
Lesly Calderón, Thomas Boehm
Synergistic, context-­dependent and hierarchical functions of epithelial components in thymic microenvironments

Cell, March 30, 2012

Dr. Thomas Boehm | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5567758/thymusgewebe_immunzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistente Erreger in Haushaltsgeräten
16.02.2018 | Hochschule Rhein-Waal

nachricht Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt
16.02.2018 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics