Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliches Thymusgewebe lässt Immunzellen reifen

30.03.2012
Vier Signalstoffe steuern die Umwandlung von T-Zellen

In der Immunabwehr spielt der Thymus eine Schlüsselrolle, denn hier reifen Abwehrzellen des Immunsystems heran, die so genannten T-Lymphozyten (T-Zellen). Aus Vorläuferzellen, die aus dem Knochenmark einwandern, entstehen unterschiedliche T-Zelltypen, die auf bestimmte Aufgaben spezialisiert sind.


Fluoreszenzmikroskopische Aufnahme von funktionslosem Thymusgewebe (grün gefärbte Zellen). Hämatopoetische Zellen (rot) wandern ein, wenn das Thymusgewebe zwei bestimmte Signalstoffe bildet (blau: Zellkerne). © MPI für Immunologie und Epigenetik

Forscher am Max-Planck-Institut für Immunologie und Epigenetik in Freiburg haben nun im Mausembryo ein künstliches Thymusgewebe erzeugt, um darin Abwehrzellen heranreifen zu lassen. Dadurch haben sie herausgefunden, welche Signalstoffe die Umwandlung der T-Zellen steuern. Die Ergebnisse sind ein erster Schritt auf dem Weg zur Herstellung künstlicher Thymusdrüsen, die das Organ bei Schädigung ersetzen könnten.

Als Teil der Immunantwort sind die T-Zellen dafür zuständig, Eindringlinge und entartete Zellen im Körper aufzuspüren und zu vernichten. Ihre Vorläufer bilden sich im Knochenmark. Angelockt von chemischen Signalen wandern sie von dort aus in den Thymus ein. Das kleine Organ oberhalb des Herzens ist in Nischen gegliedert, die den Zellen die für ihre Entwicklungsschritte jeweils notwendigen Umgebungsbedingungen bieten. Hier wandeln sie sich in verschiedene T-Zelltypen um, die schließlich in den Körper entlassen werden.

Entscheidend für die Reifung der Vorläuferzellen sind Signalstoffe, die in der jeweiligen Nische aktiv sind. So bestimmt eine Kombination aus vier Proteinen − der beiden Chemokine Ccl25 und Cxcl12, des Cytokins Scf und des sogenannten Notch-Liganden DLL4, ob Vorläuferzellen in eine bestimmte Nische des Thymus gelockt werden und wie sie sich dort weiterentwickeln. Welche Kombination der Faktoren für die Entwicklung eines bestimmten Zelltyps verantwortlich ist, war bisher jedoch noch nicht bekannt.

Forschern des Freiburger Max-Planck-Instituts ist es nun gelungen, den Steuerungsmechanismus aufzuklären. „Wie sich die Vorläuferzellen weiterentwickeln, hängt von überraschend wenigen Faktoren ab und folgt einfachen Regeln“, sagt Thomas Boehm. „So reichen beispielsweise nur zwei Faktoren, nämlich Cxcl12 und DLL4 aus, damit die T-Zell-Vorläufer die Hälfte ihrer Entwicklung zurücklegen. Von da aus sind es nur noch wenige Schritte bis hin zu zwei Typen von fertigen T-Zellen mit den Oberflächenmolekülen CD4 und CD8. Früher dachte man, die Steuerung sei viel komplizierter“, erklärt der Wissenschaftler.

Um zu testen, wie sich die unterschiedlichen Kombinationen der vier genetischen Faktoren auf die Reifung und Differenzierung der Immunzellen auswirken, haben die Forscher im Mausembryo eine künstliche Thymusumgebung geschaffen. Dazu haben sie zunächst den Transkriptionsfaktor Foxn1 ausgeschaltet. Fox1 ist dafür verantwortlich, dass all diejenigen Gene auf der Erbsubstanz abgelesen werden, die für die vier entscheidenden Proteine kodieren. Foxn1 ist daher eine Art „Generalschalter“, mit dem sich alle relevanten Gene auf einmal ausknipsen lassen. Nachdem die Forscher auf diese Weise ein funktionsloses Thymusgewebe erzeugt hatten, schalteten sie anschließend nacheinander die Gene einzeln oder in Kombination wieder an und beobachteten, welchen Effekt dies auf die Entwicklung der Vorläuferzellen hatte.

Interessanterweise konnten die Wissenschaftler auch die Vorläufer von B-Lymphozyten und von Mastzellen in die künstliche Thymusumgebung locken und sie dort reifen lassen. Diese beiden Immunzelltypen entwickeln sich normalerweise ausschließlich im Knochenmark. Indem die Forscher den Notch-Liganden DLL4 ausgeschaltet ließen, konnten sie die Reifung dieser Zellen auch im künstlichen Thymusgewebe steuern. Dies legt nahe, dass im Knochenmark ähnliche genetische Faktoren wirken wie im Thymus.

„Unsere Ergebnisse sind nicht nur für das Verständnis grundlegender immunologischer Prozesse relevant“, sagt Thomas Boehm. „Sie stellen auch erste Schritte auf dem Weg zur Herstellung künstlicher Thymi dar. Damit können wir eines Tages vielleicht Menschen helfen, deren Thymus beispielsweise durch eine Tumorbehandlung geschädigt wurde“, hofft der Wissenschaftler.

Ansprechpartner

Dr. Thomas Boehm
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-329
Fax: +49 761 5108-323
E-Mail: boehm@immunbio.mpg.de
Originalpublikation
Lesly Calderón, Thomas Boehm
Synergistic, context-­dependent and hierarchical functions of epithelial components in thymic microenvironments

Cell, March 30, 2012

Dr. Thomas Boehm | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5567758/thymusgewebe_immunzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics