Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstlicher Ortswechsel für Proteine dank neuem Nanobody-Tool

11.04.2017

Forschende am Biozentrum der Universität Basel haben eine Methode entwickelt, mit der sich Proteine an einen anderen Ort in der Zelle verfrachten lassen. Dadurch ist es möglich, die Funktion von Proteinen in Abhängigkeit zu ihrer Position zu untersuchen. Das Nanobody-Tool lässt sich für eine Vielzahl von Proteinen verwenden und ist in sämtlichen Bereichen der Entwicklungsbiologie einsetzbar. Die Fachzeitschrift «eLife» hat die Resultate veröffentlicht.

Die Gruppe von Prof. Markus Affolter erforscht das Wachstum des Flügels der Fruchtfliege Drosophila um herauszufinden, welche Prozesse die Entwicklung und das Organwachstum steuern. Proteine, die solche Wachstumsprozesse kontrollieren, stehen im Fokus ihrer Untersuchungen.


Nanobodies (pink) in der Flügelanlage einer Fruchtfliegen-Larve.

Universität Basel, Biozentrum

Dabei ist nicht allein die Zusammensetzung der Proteine von Bedeutung, sondern auch ihre Position. Diese kann die jeweilige Funktion eines Proteins beeinflussen. Das neue Nanobody-Tool ermöglicht es, die Lage der Proteine zu verändern und so ihre Funktion zu erforschen.

Neues Tool für alle GFP-gebundenen Proteine

Um das gewünschte Protein transportieren zu können, wird es zunächst mit einem grün fluoreszierenden Protein (GFP) markiert. Anschliessend werden Anti-GFP-Nanobodies eingesetzt – kleinste Antikörperfragmente, die von Kamelen gewonnen werden. Sie binden GFP-markierte Proteine und befördern sie im lebenden Organismus an einen neuen Ort.

Der Nanobody ist dabei an Signalproteine gekoppelt, die den Zielort der zu transportierenden Proteine bestimmen. So zwingt der Nanobody dem mit GFP-markierten Protein die neue Position regelrecht auf. «Selbst, wenn wir die Zusammensetzung und die Struktur eines Proteins nicht genau kennen, können wir es mit GFP markieren und mithilfe der Nanobodies seinen Transport steuern», sagt Stefan Harmansa, einer der beiden Erstautoren.

Künstlicher Ortswechsel durch Nanobodies

Durch das neue Tool gelang es den Forschenden, Proteine an einen neuen Ort sowohl innerhalb als auch ausserhalb der Zelle zu transferieren. «Dadurch, dass wir Proteine an neue Orte verfrachten, sehen wir, wie sich dadurch ihre Funktion verändert oder eben auch nicht», erklärt Ilaria Alborelli, ebenfalls Erstautorin der Studie.

Bislang konnten die Wissenschaftler einen solchen Ortswechsel bei Proteinen nur sehr eingeschränkt vornehmen. Das neue Nanobody-Tool jedoch ermöglicht es nun, einfach und effizient die Position von sämtlichen GFP-gebundenen Proteinen zu beeinflussen.

Den Basler Wissenschaftler ist es bereits gelungen, das Organwachstum des Flügels der Fruchtfliege Drosophila mithilfe des Nanobody-Tools näher zu untersuchen. Dazu haben sie das Signalmolekül Dpp positionsabhängig beeinflusst und so seinen Einfluss auf das Flügelwachstum genauer zeigen können.

Zukünftig kann das neue Nanobody-Tool für vielfältigste Studien zum Organwachstum und in sämtlichen Bereichen der Entwicklungsbiologie angewendet werden. So lassen sich das Wachstum und die Entwicklung verschiedenster Zellen und Organe näher untersuchen.

Auch das Team um Markus Affolter sieht sich vor vielen neuen Fragestellungen. «Für uns Entwicklungsbiologen ist nach wie vor eine der drängendsten Fragen, woher ein Organismus weiss, wann er sein Wachstum stoppen muss. Ganz konkret: Wie kommt es, dass Arme oder Beine aufhören zu wachsen, wenn sie ihre korrekte Länge erreicht haben?», so Stefan Harmansa. Das neue Tool kann zukünftig dazu beitragen, Antworten auf die Frage zu finden, wie Organwachstum reguliert wird.

Originalbeitrag

Stefan Harmansa, Ilaria Alborelli, Dimitri Bieli, Emmanuel Caussinus and Markus Affolter
A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila
eLife (2017), doi: 10.7554/eLife.22549

Weitere Auskünfte

Prof. Dr. Markus Affolter, Universität Basel, Biozentrum, Tel. +41 61 207 20 72, E-Mail: markus.affolter@unibas.ch
Heike Sacher, Universität Basel, Biozentrum, Kommunikation, Tel. +41 61 207 14 49, E-Mail: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: Drosophila Fruchtfliege Drosophila Nanobodies Proteine protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics