Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Metallenzyme oder die chemische Synthese von Morgen

17.11.2010
Forscher des Zentrums für Atomenergie und alternative Energien (CEA), der Universität Joseph Fourier und des Französischen Zentrums für wissenschaftliche Forschung (CNRS) [1] haben eine neue Möglichkeit für die Beobachtung der wichtigsten Etappen eines lebensnotwendigen Prozesses gefunden – die Sauerstoffaktivierung.

Diese neue Methode kombiniert die Protein-Kristallographie mit der biomimetischen Chemie. Zu diesem Zweck haben sie ein künstliches Metallenzym entwickelt, das sich aus einem chemischen Katalysator und einem Protein zusammensetzt. Anschließend haben sie dieses Enzym mit Hilfe der Röntgenkristallographie an der Europäischen Synchrotronstrahlungsquelle (ESRF) beobachtet.

Diese Ergebnisse ebnen den Weg für die Entwicklung von künstlichen Metallenzymen, die in der Lage sind, bei gleichzeitiger Kostensenkung Moleküle für die Industrie zu produzieren und neue Perspektiven für die grüne Chemie zu eröffnen. Die Ergebnisse wurden Online in der Zeitschrift Nature Chemistry veröffentlicht.

Viele chemische Moleküle können in zwei Formen vorkommen, die sich zueinander spiegelbildlich verhalten (Enantiomere). Meist ist nur eine der beiden Formen für die Gesundheits-, Agrar- oder Ernährungsindustrie von Interesse. Bei der chemischen Synthese werden aktuell jedoch noch beide Formen des Moleküls generiert (enantioselektive Katalyse). Zur Isolation der gewünschten Form bedarf es aufwendiger und kostspieliger Aufbereitungsprozesse.

In der Natur selbst existieren Enzyme, die die gewünschte Form direkt erzeugen können. So wurde die Idee geboren, diese Enzyme industriell zu nutzen. Das Problem ist jedoch, dass sie nur in geringer Menge in der Natur vorkommen. Die homogene chemische Katalyse [2] ermöglicht mehrere Reaktionen, aber oft mit einer geringen Stabilität der Katalysatoren und einer geringen Spezifizierung. So kamen die Forscher auf die Idee, Biologie und Chemie zu kombinieren, um künstliche Metallenzyme herzustellen.

Diese bestehen aus einem anorganischen Katalysator, der in eine inaktive Proteinstruktur eingebettet ist. Der anorganische Katalysator gibt die Art der Reaktion vor und bildet so das aktive Zentrum [3] des Enzyms. Die Proteinstruktur kontrolliert die Produktion der gewünschten Form des Produktes und die Wirksamkeit der Reaktion.

Auch wenn sich der grünen Chemie mit diesen künstlichen Metallenzymen umfangreiche neue Perspektiven eröffnen, so ist es noch ein weiter Weg bis zur industriellen Umsetzung. Zunächst gilt es, die perfekte Verbindung von Protein und Katalysator zu finden, ihre Funktionsweise zu verstehen und sie anzupassen. Mit ihrer Forschungsarbeit haben die Wissenschaftler der CEA und des CNRS eine wichtige Etappe bei der Entwicklung von Metallenzymen überschritten. Ihre Methode ermöglicht die Beobachtung der chemischen Reaktion im Aktiven Zentrum.

"Im beschriebenen Fall haben wir den Verlauf der Reaktion beobachtet, bei der der molekulare Sauerstoff aktiviert wird. Diese Reaktion ist bei zahlreichen lebensnotwendigen zellulären Prozessen zu beobachten", so Stéphane Ménage, Forscher des CNRS im Forscherteam für bioinspirierte Redoxchemie des Forschungsinstituts für Biotechnologien und -wissenschaften (iRTSV)

Für die Studie haben die Forscher diese Reaktion nachgeahmt, indem sie einen aromatischen Zyklus in einen Eisenkomplex einbrachten und diesen Komplex anschließend in ein Protein pflanzten [4], dessen einzige Funktion der Transport von Nickel bei der Escherichia coli Bakterie [5] ist. Sie stört demzufolge nicht die chemische Reaktion der Sauerstoffaktivierung. Die Forscher haben im Anschluss dieses künstliche Metallenzym kristallisiert und die Entwicklung der Reaktion innerhalb des Kristalls mit Röttgenkristallographie beobachtet. Dieser Kristall ermöglicht die Diffusion der Substrate und der Reaktionszwischenprodukte. Das Enzym bleibt im Kristall aktiv, die Reaktion findet statt und die verschiedenen Stufen können direkt im Kristall beobachtet werden. So ist es auch möglich, das Einbringen der Sauerstoffatome in den aromatischen Zellkern zu verfolgen. Die gesamte Reaktionskette wird mit dieser chemisch-biologischen Methode sichtbar.

[1]: Labor für Protein-Kristallographie und -Kristallogenese, Institut für Strukturbiologie J.P. Ebel (CEA/CNRS/Université Joseph Fourier) - Labor für Chemie und Biologie der Metalle (Universität Joseph Fourier/CEA/CNRS), Forschungsinstitut für Biotechnologien und -wissenschaften (iRSTV).

[2] Von einer homogenen Katalyse wird gesprochen, wenn bei einer chemischen Reaktion der Katalysator und die Edukte (Reaktanten) in derselben Phase vorliegen.

[3] Als Aktives Zentrum (engl. active site) bezeichnet man in der Chemie diejenigen Stellen eines Katalysators, an denen die katalysierte Reaktion stattfindet.

[4] Es handelt sich hierbei um das Nika-Protein.

[5] Escherichia Coli ist ein Darmbakterium, das bei Säugetieren vorkommt (sehr verbreitet beim Menschen).

Quelle: "Les métalloenzymes artificielles, ou la chimie de synthèse de demain", Pressemitteilung des CNRS – 11.10.2010, http://www2.cnrs.fr/presse/communique/1993.htm

Redakteur: Etienne Balli, etienne.balli@diplomatie.gouv.fr

| Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie