Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Metallenzyme oder die chemische Synthese von Morgen

17.11.2010
Forscher des Zentrums für Atomenergie und alternative Energien (CEA), der Universität Joseph Fourier und des Französischen Zentrums für wissenschaftliche Forschung (CNRS) [1] haben eine neue Möglichkeit für die Beobachtung der wichtigsten Etappen eines lebensnotwendigen Prozesses gefunden – die Sauerstoffaktivierung.

Diese neue Methode kombiniert die Protein-Kristallographie mit der biomimetischen Chemie. Zu diesem Zweck haben sie ein künstliches Metallenzym entwickelt, das sich aus einem chemischen Katalysator und einem Protein zusammensetzt. Anschließend haben sie dieses Enzym mit Hilfe der Röntgenkristallographie an der Europäischen Synchrotronstrahlungsquelle (ESRF) beobachtet.

Diese Ergebnisse ebnen den Weg für die Entwicklung von künstlichen Metallenzymen, die in der Lage sind, bei gleichzeitiger Kostensenkung Moleküle für die Industrie zu produzieren und neue Perspektiven für die grüne Chemie zu eröffnen. Die Ergebnisse wurden Online in der Zeitschrift Nature Chemistry veröffentlicht.

Viele chemische Moleküle können in zwei Formen vorkommen, die sich zueinander spiegelbildlich verhalten (Enantiomere). Meist ist nur eine der beiden Formen für die Gesundheits-, Agrar- oder Ernährungsindustrie von Interesse. Bei der chemischen Synthese werden aktuell jedoch noch beide Formen des Moleküls generiert (enantioselektive Katalyse). Zur Isolation der gewünschten Form bedarf es aufwendiger und kostspieliger Aufbereitungsprozesse.

In der Natur selbst existieren Enzyme, die die gewünschte Form direkt erzeugen können. So wurde die Idee geboren, diese Enzyme industriell zu nutzen. Das Problem ist jedoch, dass sie nur in geringer Menge in der Natur vorkommen. Die homogene chemische Katalyse [2] ermöglicht mehrere Reaktionen, aber oft mit einer geringen Stabilität der Katalysatoren und einer geringen Spezifizierung. So kamen die Forscher auf die Idee, Biologie und Chemie zu kombinieren, um künstliche Metallenzyme herzustellen.

Diese bestehen aus einem anorganischen Katalysator, der in eine inaktive Proteinstruktur eingebettet ist. Der anorganische Katalysator gibt die Art der Reaktion vor und bildet so das aktive Zentrum [3] des Enzyms. Die Proteinstruktur kontrolliert die Produktion der gewünschten Form des Produktes und die Wirksamkeit der Reaktion.

Auch wenn sich der grünen Chemie mit diesen künstlichen Metallenzymen umfangreiche neue Perspektiven eröffnen, so ist es noch ein weiter Weg bis zur industriellen Umsetzung. Zunächst gilt es, die perfekte Verbindung von Protein und Katalysator zu finden, ihre Funktionsweise zu verstehen und sie anzupassen. Mit ihrer Forschungsarbeit haben die Wissenschaftler der CEA und des CNRS eine wichtige Etappe bei der Entwicklung von Metallenzymen überschritten. Ihre Methode ermöglicht die Beobachtung der chemischen Reaktion im Aktiven Zentrum.

"Im beschriebenen Fall haben wir den Verlauf der Reaktion beobachtet, bei der der molekulare Sauerstoff aktiviert wird. Diese Reaktion ist bei zahlreichen lebensnotwendigen zellulären Prozessen zu beobachten", so Stéphane Ménage, Forscher des CNRS im Forscherteam für bioinspirierte Redoxchemie des Forschungsinstituts für Biotechnologien und -wissenschaften (iRTSV)

Für die Studie haben die Forscher diese Reaktion nachgeahmt, indem sie einen aromatischen Zyklus in einen Eisenkomplex einbrachten und diesen Komplex anschließend in ein Protein pflanzten [4], dessen einzige Funktion der Transport von Nickel bei der Escherichia coli Bakterie [5] ist. Sie stört demzufolge nicht die chemische Reaktion der Sauerstoffaktivierung. Die Forscher haben im Anschluss dieses künstliche Metallenzym kristallisiert und die Entwicklung der Reaktion innerhalb des Kristalls mit Röttgenkristallographie beobachtet. Dieser Kristall ermöglicht die Diffusion der Substrate und der Reaktionszwischenprodukte. Das Enzym bleibt im Kristall aktiv, die Reaktion findet statt und die verschiedenen Stufen können direkt im Kristall beobachtet werden. So ist es auch möglich, das Einbringen der Sauerstoffatome in den aromatischen Zellkern zu verfolgen. Die gesamte Reaktionskette wird mit dieser chemisch-biologischen Methode sichtbar.

[1]: Labor für Protein-Kristallographie und -Kristallogenese, Institut für Strukturbiologie J.P. Ebel (CEA/CNRS/Université Joseph Fourier) - Labor für Chemie und Biologie der Metalle (Universität Joseph Fourier/CEA/CNRS), Forschungsinstitut für Biotechnologien und -wissenschaften (iRSTV).

[2] Von einer homogenen Katalyse wird gesprochen, wenn bei einer chemischen Reaktion der Katalysator und die Edukte (Reaktanten) in derselben Phase vorliegen.

[3] Als Aktives Zentrum (engl. active site) bezeichnet man in der Chemie diejenigen Stellen eines Katalysators, an denen die katalysierte Reaktion stattfindet.

[4] Es handelt sich hierbei um das Nika-Protein.

[5] Escherichia Coli ist ein Darmbakterium, das bei Säugetieren vorkommt (sehr verbreitet beim Menschen).

Quelle: "Les métalloenzymes artificielles, ou la chimie de synthèse de demain", Pressemitteilung des CNRS – 11.10.2010, http://www2.cnrs.fr/presse/communique/1993.htm

Redakteur: Etienne Balli, etienne.balli@diplomatie.gouv.fr

| Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie