Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankheitsforschung nach der Sequenzierung des menschlichen Genoms

10.11.2009
Regensburger Wissenschaftler erhalten Förderung vom Europäischen Forschungsrat

Die Identifizierung der Sequenz des menschlichen Genoms machte deutlich, dass lediglich ein kleiner Bruchteil des Genoms für Proteine kodiert. Man ging zunächst davon aus, dass es sich beim "Rest" um unnütze DNA handelt, die sich im Verlauf der Evolution angesammelt hat. Es wurde allerdings schnell klar, dass sich in der "Müll-DNA" wichtige Gene verbergen. Die Funktion solcher nicht-kodierenden RNAs (Ribonukleinsäuren) ist allerdings noch weitestgehend unbekannt.

Eine sehr wichtige Klasse dieser RNAs sind sogenannte kleine nicht-kodierende RNAs, die durch ihre charakteristische Länge von ca. 20-30 Nukleotiden gekennzeichnet ist. Solche RNAs werden microRNAs, siRNAs oder piRNAs genannt. Diese RNAs regulieren die Übersetzung von DNA in Proteine (Gen-Expression) an unterschiedlichen Stellen und stellen somit wichtige Regulatoren in der Zelle dar. Ihre Erforschung steht noch am Anfang, allerdings wird offensichtlich, dass sie eine wichtige Funktion für eine Vielzahl von zellulären Prozessen haben. Man geht sogar davon aus, dass nicht-kodierende RNAs eine wichtige Rolle bei der Ausprägung von verschiedenen Krankheiten - insbesondere von Krebs - spielen.

Die Funktion dieser nicht-kodierenden RNAs bei der Entstehung von Krebs im Detail zu untersuchen und dadurch möglicherweise neue Wege zur Therapie aufzuzeigen, ist Teil des neuen Forschungsprojekts "Small non-coding RNAs in cell function and disease (sRNAs)" an der Universität Regensburg. Der Europäische Forschungsrat (ERC) fördert das Regensburger Forschungsprojekt für den Zeitraum von Januar 2010 bis Dezember 2014 mit einer Gesamtsumme von 1,14 Millionen Euro. Geleitet und koordiniert wird das Projekt von Prof. Dr. Gunter Meister vom Institut für Biochemie, Genetik und Mikrobiologie der Universität Regensburg.

In enger Zusammenarbeit mit Dr. Dagmar Beier und Dr. Christoph Beier von der Medizinischen Fakultät der Universität Regensburg wollen Prof. Meister und seine Mitarbeiterinnen und Mitarbeiter in speziellen Zellen von Gehirntumoren (Glioblastomen) die microRNAs hemmen. Die Forscher erhoffen sich dadurch, das Wachstum der Tumor-Zellen blockieren zu können. Ein Glioblastom ist eine tödlich verlaufende Krebsform, die derzeit noch nicht geheilt werden kann.

Zudem ist es der Arbeitsgruppe von Prof. Meister erst vor kurzem gelungen, eine neue Klasse von kleinen nicht-kodierenden RNAs zu identifizieren. Diese RNAs zeichnen sich dadurch aus, dass sie aus anderen RNAs herausgeschnitten werden und erst als kleine Fragmente aktiv werden. Es gibt genetische und klinische Hinweise darauf, dass diese Klasse von RNAs bei der Entstehung einer neurodegenerativen Krankheit, dem sogenannten Prader-Willi-Syndrom, eine wichtige Rolle spielen könnte. Die Regensburger Wissenschaftler versuchen nun, die molekulare Funktion dieser kleinen RNAs aufzuklären, um dadurch auch ein besseres Verständnis des Prader-Willi-Syndroms zu erhalten.

Es ist sehr wahrscheinlich, dass es noch eine Vielzahl bislang unentdeckter Klassen von nicht-kodierenden RNAs gibt. Die Regensburger Wissenschaftler haben es sich daher zum Ziel gesetzt, mittels modernster Methoden weitere RNA-Klassen dieser Art zu finden. Dies dürfte nicht nur zu einem besseren Verständnis der menschlichen Zelle beitragen, sondern auch zu neuen Erkenntnissen über die molekularen Ursachen verschiedener Krankheiten führen.

Nähere Informationen zu ERC Starting Grants:
Mit einem ERC Starting Grant können Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler eine neue Forschergruppe aufbauen oder ein bestehendes Forscherteam konsolidieren. Ziel ist es somit, eine Struktur für den Übergang zu einem unabhängigen exzellenten Forschungsteam aufzubauen und die Kreativität junger und vielversprechender Wissenschaftlerinnen und Wissenschaftler zu fördern sowie neue Ideen in der Forschung zu unterstützen. Die Grants werden im Wettbewerb an herausragende Forscherinnen und Forscher vergeben. Alleiniges Auswahlkriterium ist die wissenschaftliche Exzellenz der Antragstellerinnen und Antragsteller beziehungsweise der Projektvorschläge. Antragsberechtigt für den ERC Starting Grant sind Wissenschaftlerinnen und Wissenschaftler in einem Zeitraum von drei bis acht Jahren (in begründeten Ausnahmefällen elf Jahren) nach ihrer Promotion.
Ansprechpartner für Medienvertreter:
Prof. Dr. Gunter Meister
Universität Regensburg
Institut für Biochemie, Genetik und Mikrobiologie
Tel.: 0941 943-2847
Gunter.Meister@vkl.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten