Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankheitserreger nehmen gut vernetzte Eiweißstoffe ins Visier

16.09.2014

Proteine erfüllen ihre Aufgaben nicht alleine, sondern vernetzen sich zu kleinen oder größeren Teams. Wie diese Proteinnetzwerke von Krankheitserregern manipuliert werden hat ein ein Forscherteam unter der Leitung der Technischen Universität München (TUM) an einem Pflanzenmodell untersucht.

Die Forscher konnten zeigen, dass so unterschiedliche Erreger wie Pilze und Bakterien die gleiche Taktik anwenden: Sie attackieren gezielt die Proteine, die viele Funktionen haben und stark vernetzt sind. Die Arbeit ist in der aktuellen Ausgabe von Cell Host & Microbe erschienen.


Pilzbefall auf einem Blatt der Modellpflanze Acker-Schmalwand.

Jeffery L. Dangl / UNC

Proteine sind für alle nahezu alle lebenswichtigen Funktionen im Organismus verantwortlich: Unter anderem katalysieren sie Reaktionen im Stoffwechsel, leiten Signale weiter, übernehmen den Transport bestimmter Stoffe und sind für die Antworten des Immunsystems zuständig. Bereits vor einigen Jahren stellten Forscher fest, dass die Proteine nicht unabhängig voneinander arbeiten, sondern komplexe Netzwerke bilden.

"Wenn man sich die Proteinnetzwerke ansieht, findet man viele Gemeinsamkeiten mit sozialen Netzwerken im Web", erklärt Dr. Pascal Falter-Braun vom TUM-Lehrstuhl für die Systembiologie der Pflanzen. "Auch unter den Proteinen gibt es gute Netzwerker, die mit vielen anderen Proteinen in Kontakt stehen - und daneben auch solche, die weniger interaktiv sind."

Verschiedene Krankheitserreger attackieren die gleichen Ziele

In der Studie an der Modellpflanze Arabidopsis thaliana (Acker-Schmalwand) stellten die Forscher fest, dass Krankheitserreger insbesondere die stark vernetzten Proteine ins Visier nehmen. "Dabei hat uns überrascht, dass biologisch so unterschiedliche Erreger wie Bakterien und Pilze die gleichen Proteine manipulieren", führt Falter-Braun aus. Dazu zählen Proteine, die wichtige Abläufe in der Zelle steuern. Wie zum Beispiel Transkriptionsfaktoren: Diese aktivieren Gene für die Produktion neuer Proteine.

Seit einiger Zeit ist bekannt, dass diese Knotenpunkte für das gesamte Netzwerk bedeutend sind, da sie viele Prozesse koordieren und aufeinander abstimmen. "Da die Krankheitserreger ihren Wirt bei einem Angriff möglichst effektiv schwächen wollen, versuchen sie Schaltzentralen der Zelle unter Kontrolle zu bekommen, also Proteine mit möglichst vielen ‚Freunden’ im Netzwerk", sagt Falter-Braun.

Schaltzentralen sind stark konserviert

Für die zentrale Rolle dieser Proteine spricht auch, dass sie stark konserviert sind. Im Lauf der Evolution können kleine Mutationen zu Veränderungen in den Molekülen führen. Wenn sich für den betroffenen Organismus ein Vorteil ergibt, ist es wahrscheinlich, dass die neuen Eigenschaften an die Nachkommen weitervererbt werden.

Bei den stark vernetzten Proteinen kommen solche Veränderungen kaum vor, wie Falter-Braun erklärt: "Da diese Proteine eine so zentrale Position im Netzwerk haben, können sie sich kaum verändern, ohne dass dies negative Auswirkungen auf die Pflanze hätte.“
Diese Konservierung scheinen die Pathogene auszunutzen: Sie zielen auf Proteine, die sich nicht verändern - und sich damit dem Angreifer auch nicht entziehen können.

Hilfe aus dem Netzwerk

Gleichzeitig scheinen die Netzwerke so aufgebaut zu sein, dass sie die Verteidigung der empfindlichen Knotenpunkte optimal unterstützen. Denn die für Pathogene besonders attraktiven Proteine haben häufig Nachbarn, deren Mutationen das Netzwerk gut verkraftet. Wie diese „Nachbarschaftshilfe“ funktioniert und welche anderen Verteidigungsstrategien das Netzwerk außerdem bietet, muss noch untersucht werden.

Dass verschiedene Erreger die gleichen Proteine in der Pflanze angreifen, könnte den Weg für die Züchtung von resistenteren Nutzpflanzen weisen. Ob die Ergebnisse auf andere Organismen - und auch den Menschen - übertragbar sind, bedarf noch weiterer Forschung. „Da menschliche Proteine den gleichen evolutionären Prozessen unterworfen sind, ist es durchaus möglich, dass unsere Erkenntnisse auch für den Menschen gültig sind“, so Falter-Braun abschließend.

Publikation:
Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life; Ralf Weßling, Petra Epple, Stefan Altmann, Yijian, Li Yang, Stefan R. Henz, Nathan McDonald, Kristin Wiley, Kai Christian Bader, Christine Gläßer, M. Shahid Mukhtar, Sabine Haigis, Lila Ghamsari, Amber E. Stephens, Joseph R. Ecker, Marc Vidal, Jonathan D. G. Jones, Klaus F. X. Mayer, Emiel Ver Loren van Themaat, Detlef Weigel, Paul Schulze-Lefert, Jeffery L. Dangl, Ralph Panstruga, and Pascal Braun; Cell Host & Microbe, DOI: 10.1016/j.chom.2014.08.004

Kontakt: 
Dr. Pascal Falter-Braun
Technische Universität München
Lehrstuhl für Systembiologie der Pflanzen
Tel: +49 8161 71-5645
pbraun@wzw.tum.de
www.sysbiol.wzw.tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31785/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau