Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexes vereinfacht - ForscherInnenteam beschreibt erstmals komplexe Flüssigkeiten

01.06.2011
Einem internationalen ForscherInnenteam ist es erstmals gelungen, eine breit anwendbare Methode zu entwickeln, um komplexen Flüssigkeiten ihre physikalischen Grundlagen zu entlocken.

ForscherInnen der Universitäten Wien und Rom haben eine mikroskopische Theorie entwickelt, die die Wechselwirkungen zwischen den verschiedenen Komponenten einer komplexen Polymermischung überzeugend beschreibt. Dieser Ansatz wurde nun von Physikern aus Jülich experimentell mit Neutronenstreuexperimenten in Grenoble belegt. Die Ergebnisse sind in der Juni-Ausgabe der renommierten Fachzeitschrift "Physical Review Letters" nachzulesen.


Erstmals können komplexe Flüssigkeiten realistisch simuliert werden. Mit der "Coarse Graining"-Methode werdem die komplexen Makromoleküle der links gezeigten Mischung aus Sternpolymeren (gelb und blau) und linearen Polymeren (rot) durch Kugeln (rechts) ersetzt. Die weggelassenen Informationen arbeiteten sie gemittelt in das vereinfachte System ein, so dass die Charakteristika der Substanzen erhalten bleiben. Dass dies sehr gut gelang, belegten sie durch Neutronenstreuexperimente. (Bildnachweis: Forschungszentrum Jülich/Universität Wien)

Wichtige Materialien aus Technik und Natur gehören zu den komplexen Flüssigkeiten: Polymerschmelzen für die Kunststoffproduktion, Mischungen aus Wasser, Öl und Amphiphilen, die in lebenden Zellen genauso zu finden sind wie in der Waschtrommel, oder kolloidale Suspensionen, wie Blut oder Dispersionsfarben. Sie unterscheiden sich wesentlich von einfachen Flüssigkeiten aus kleinen Molekülen, wie etwa Wasser: Denn sie bestehen aus Mischungen von mikro- und nanometergroßen Teilchen mit einer großen Zahl sogenannter Freiheitsgrade. Das sind zum Beispiel Schwingungen, Bewegungen der funktionellen Gruppen von Molekülen oder gemeinsame Bewegungen mehrerer Moleküle. Sie machen sich auf sehr unterschiedlichen Längen-, Zeit- und Energieskalen bemerkbar. Dies erschwert experimentelle und theoretische Untersuchungen und behinderte bisher das Verständnis der Eigenschaften dieser Materialien und die gezielte Entwicklung neuer Materialien mit besseren Eigenschaften.

Modellierung komplexer Flüssigkeiten an den Universitäten Wien und Rom

Eine von PhysikerInnen des Forschungszentrums Jülich, des Instituts Laue-Langevin und der Universitäten Wien und Rom entwickelte und getestete Methode ermöglicht nun erstmals eine realistische Modellierung komplexer Flüssigkeiten. "Unsere mikroskopische Theorie beschreibt die Wechselwirkungen zwischen den verschiedenen Komponenten einer komplexen Mischung und ermöglicht dardurch realistische Rückschlüsse auf ihre makroskopischen Eigenschaften, etwa ihre Struktur oder ihre Fließeigenschaften", freut sich Christos Likos, Professor für Multiscale Computational Physics an der Universität Wien.

Das Team aus Wien und Rom erarbeitete das Theorie-Modell. Weil die ForscherInnen dafür nicht alle Details des echten Systems – eine Mischung aus größeren sternförmigen Polymeren und kleineren Polymerketten – einbeziehen konnten, eliminierten sie systematisch die schnellen Freiheitsgrade und konzentrierten sich auf die relevanten, langsamen Freiheitsgrade – eine langwierige und anspruchsvolle Arbeit. "Dafür nutzen wir eine relativ neue Methode namens 'Coarse Graining' und ersetzten jedes komplexe Makromolekül durch eine Kugel passender Größe. Die Herausforderung besteht darin, die weggelassenen Freiheitsgrade gemittelt in das vereinfachte System einfließen zu lassen, sodass die Charakteristika der Substanzen erhalten bleiben", erläutert Christos Likos, Experte für Theorie und Simulation.

Jülicher PhysikerInnen führen Neutronenstreuexperimente in Grenoble durch

Dass die Wechselwirkungen zwischen den Kugeln des vergröberten Modells die Verhältnisse im echten System realistisch nachbilden, belegte das Team aus Jülich mit Hilfe aufwendiger Neutronenstreuexperimente am Institut Laue-Langevin im französischen Grenoble. "Wir standen vor der Schwierigkeit, sozusagen die Nadel im Heuhaufen abzulichten", erklärt der Physiker und Experte für Neutronenstreuung Jörg Stellbrink vom Jülich Centre for Neutron Science (JCNS). Denn für Neutronen sind die einzelnen Polymere der Mischung zunächst nicht zu unterscheiden. Deshalb färbten die PhysikerInnen die für sie interessanten Bestandteile so an, dass sie sich abhoben. Das ist eine Spezialität des Jülicher Teams. So konnten sie gezielt die Strukturen und Wechselwirkungen auf einer mikroskopischen Längenskala untersuchen.

Besonders stolz sind die PhysikerInnen auf die sehr gute Übereinstimmung zwischen Theorie und Experiment. Die Methode eröffnet nun breite Möglichkeiten, die physikalischen Eigenschaften ganz unterschiedlicher komplexer Mischungen zu untersuchen.

Publikation
Ultrasoft Colloid/Polymer Mixtures: Structure and Phase Diagram;
B. Lonetti, M. Camargo, J. Stellbrink, C. N. Likos, E. Zaccarelli, L. Willner, P. Lindner, D. Richter; Physical Review Letters (3. Juni 2011).

DOI: 10.1103/PhysRevLett.106.228301.

Wissenschaftliche Kontakte
Dr. Jörg Stellbrink
Forschungszentrum Jülich
Jülich Centre for Neutron Science JCNS
52425 Jülich
T+49-170-6437961
j.stellbrink@fz-juelich.de
Univ.-Prof. Dipl.-Ing. Dr. Christos N. Likos
Computational Physics
Universität Wien
1090 Wien, Sensengasse 8/15
T +43-1-4277-732 30
christos.likos@univie.ac.at
Rückfragehinweise
Angela Wenzik
Forschungszentrum Jülich
Jülich Centre for Neutron Science JCNS
und Peter Grünberg Institut PGI
52425 Jülich
T+49-2461-61 6048
a.wenzik@fz-juelich.de
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v106/i22/e228301
- Physical Review Letters
http://www.fz-juelich.de/ics/ics-1/DE/Home/home_node.html
- Institut für Neutronenstreuung des Forschungszentrums Jülich (ICS-1 / JCNS-1)
http://comp-phys.univie.ac.at
- Arbeitsgruppe Computergestützte Physik der Universität Wien

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie