Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jacobs-Forscher weisen erstmals „biologische“ Halogenbindungen in künstlichem Molekülsystem nach

14.01.2013
Wissenschaftler der Jacobs University identifizierten erstmals schwache chemische Wechselwirkungen in einem künstlichen Molekülsystem, wie sie bislang nur von biologischen Systemen, beispielsweise Proteinen, bekannt waren:
Das Forscherteam konnte zeigen, dass Jod- bzw. Brom-Moleküle, die in das hohle synthetische Container-Molekül Cucurbit[6]uril eingebracht wurden, über sogenannte perpendikulare Halogenbrücken in dem Molekülhohlraum gebunden wurden. Die Nutzung solcher biomimetischer Interaktionen in der Chemie eröffnet neue Entwicklungsmöglichkeiten für halogenhaltige Medikamente, Antiseptika und Materialien für Batterien und Solarzellen (J.Am. Chem. Soc., 2012, 134 (48), pp 19935–19941).

Biomimetik – die Übertragung biologischer Funktionsprinzipien auf künstliche Systeme – basiert auf der These, dass sich in der Natur durch die Evolution optimierte Strukturen und Prozesse entwickelt haben und diese damit bestens als Vorbild für Lösungen in Technologie und Design geeignet sind. Während Biomimetik in der Technik weit verbreitet ist und in der Grundidee eine z. T. jahrhundertelange Tradition hat, ist die biomimetische bzw. bioinspirierte Chemie ein vergleichsweise junges Forschungsfeld, das erst seit den 1990er zunehmend an Bedeutung gewinnt. Biomimetische chemische Verbindungen gleichen in Bezug auf ihre funktionellen Eigenschaften biologischen Substanzen, sind oft jedoch stabiler als ihre natürlichen Vorbilder, da sie sich in ihrer Zusammensetzung deutlich von diesen unterscheiden. Bewährt haben sie sich daher vor allem zur Entwicklung künstlicher Modellsysteme, mit denen enzymatische, hormonelle und andere natürliche molekularbiologische Prozesse simuliert werden können, die nur schwer an lebenden Organismen oder in vitro mit natürlichen Systemen zu untersuchen sind.

Unkonventionelle Bindung: Halogenmoleküle aus zwei Jod- oder Bromatomen (Grafik links, orange-braun), werden durch perpendikulare Halogenbrückenbindungen zu den Harnstoffgruppen im Hohlraum des synthetischen Container-Molekül Cucurbit[6]uril gebunden (Grafik rechts). Dieser Bindungstyp war bislang nur aus biologischen Systemen bekannt. Die Nutzung solcher biomimetischer Interaktionen in der Chemie eröffnet neue Entwicklungsmöglichkeiten für Medikamente- und Materialdesign.

An der Jacobs University wurde nun ein biomimetisches System entwickelt, in dem kleine Halogenmoleküle aus zwei Jod- bzw. Bromatomen sogenannte perpendikulare – also senkrechte – Halogenbrückenbindungen zu den Harnstoffgruppen eines hohlen Makromoleküls aus der Klasse der Cucurbiturile ausbildeten und so in dem Hohlraum des synthetischen, fassförmigen Containermoleküls gebunden wurden. Diese Art von schwacher chemischer Interaktion ist eine spezielle Form von Halogenbrücken, wie sie bislang nur aus der Biologie für halogenhaltige Proteinkomplexe bekannt waren. Das Forscherteam der Jacobs University konnte seine experimentellen Befunde durch Kristallstrukturen und mittels quantenchemischer Berechnungen verifizieren und damit erstmals diese „biologische“ Variante von Halogenbindungen für ein artifizielles Molekülsystem nachweisen.

„Durch die Übertragung der Halogenbrücken von Proteinen auf synthetische Moleküle ist es uns gelungen, die Triebkraft zur Ausbildung dieser ungewöhnlichen Bindungen nun wirklich im Detail zu verstehen und auch zu verallgemeinern. So ist es beispielsweise entscheidend, dass sowohl Proteine als auch Cucurbiturile Amidgruppen enthalten, und dass die Wechselwirkung in der Gegenwart von Wasser erfolgt“, sagt Werner Nau, Professor of Chemistry und Leiter der Studie. Mit seinem Team forscht er schwerpunktmäßig im Bereich der supramolekularen Chemie, die sich mit der Assoziation von Molekülen zu übergeordneten Strukturen befasst und den für diese Prozesse wichtigen schwachen Wechselwirkungen. Unterstützt wurde er von Ulrich Kortz, ebenfalls Chemieprofessor an der Bremer Privatuniversität, der mit seinem Team seine langjährige Expertise zur Strukturaufklärung komplexer molekularer Strukturen zu dem Kooperationsprojekt beisteuerte.

„Die beobachteten biomimetischen Wechselwirkungen erlauben aber nicht nur ein besseres Verständnis der Bindungen in biologischen Systemen, zum Beispiel für die Erkennung des Schilddrüsenhormons Thyroxin, sondern auch deren Nutzung für die Entwicklung neuer Materialien oder Pharmaka“, so Nau weiter. „Unsere Forschungsergebnisse liefern hier insofern neue Design-Kriterien, als bislang die von uns untersuchten schwachen Bindungskräfte bei der computergestützten Wirkstoffoptimierung vernachlässigt wurden“, so der Bremer Chemiker. „Das an das Cucurbituril komplexierte Jod erfährt zudem durch die biomimetischen Halogenbrücken eine besondere Stabilisierung, die für Anwendungen von großem Interesse ist. Das gebundene Jod ist in wässriger Lösung länger stabil, eine Eigenschaft, die wir zurzeit zur Entwicklung länger wirksamer jodhaltiger Antiseptika nutzen. Zudem untersuchen wir, ob durch Zugabe von Cucurbituril jodhaltige Herzschrittmacher-Batterien und organische Solarzellen in ihrer Leistung verbessert werden können, in denen Jod als Elektrodenmaterial dient“, so Jacobs-Professor Nau abschließend.

Fragen zu der Studie beantwortet:
Werner Nau | Professor of Chemistry
Tel.: +49 421 200-3233 | Email: w.nau@jacobs-university.de
Weitere Infos unter: http://www.jacobs-university.de/ses/wnau

Dr. Kristin Beck | Jacobs University Bremen
Weitere Informationen:
http://pubs.acs.org/doi/abs/10.1021/ja3102902
http://www.jacobs-university.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen