Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jacobs-Forscher weisen erstmals „biologische“ Halogenbindungen in künstlichem Molekülsystem nach

14.01.2013
Wissenschaftler der Jacobs University identifizierten erstmals schwache chemische Wechselwirkungen in einem künstlichen Molekülsystem, wie sie bislang nur von biologischen Systemen, beispielsweise Proteinen, bekannt waren:
Das Forscherteam konnte zeigen, dass Jod- bzw. Brom-Moleküle, die in das hohle synthetische Container-Molekül Cucurbit[6]uril eingebracht wurden, über sogenannte perpendikulare Halogenbrücken in dem Molekülhohlraum gebunden wurden. Die Nutzung solcher biomimetischer Interaktionen in der Chemie eröffnet neue Entwicklungsmöglichkeiten für halogenhaltige Medikamente, Antiseptika und Materialien für Batterien und Solarzellen (J.Am. Chem. Soc., 2012, 134 (48), pp 19935–19941).

Biomimetik – die Übertragung biologischer Funktionsprinzipien auf künstliche Systeme – basiert auf der These, dass sich in der Natur durch die Evolution optimierte Strukturen und Prozesse entwickelt haben und diese damit bestens als Vorbild für Lösungen in Technologie und Design geeignet sind. Während Biomimetik in der Technik weit verbreitet ist und in der Grundidee eine z. T. jahrhundertelange Tradition hat, ist die biomimetische bzw. bioinspirierte Chemie ein vergleichsweise junges Forschungsfeld, das erst seit den 1990er zunehmend an Bedeutung gewinnt. Biomimetische chemische Verbindungen gleichen in Bezug auf ihre funktionellen Eigenschaften biologischen Substanzen, sind oft jedoch stabiler als ihre natürlichen Vorbilder, da sie sich in ihrer Zusammensetzung deutlich von diesen unterscheiden. Bewährt haben sie sich daher vor allem zur Entwicklung künstlicher Modellsysteme, mit denen enzymatische, hormonelle und andere natürliche molekularbiologische Prozesse simuliert werden können, die nur schwer an lebenden Organismen oder in vitro mit natürlichen Systemen zu untersuchen sind.

Unkonventionelle Bindung: Halogenmoleküle aus zwei Jod- oder Bromatomen (Grafik links, orange-braun), werden durch perpendikulare Halogenbrückenbindungen zu den Harnstoffgruppen im Hohlraum des synthetischen Container-Molekül Cucurbit[6]uril gebunden (Grafik rechts). Dieser Bindungstyp war bislang nur aus biologischen Systemen bekannt. Die Nutzung solcher biomimetischer Interaktionen in der Chemie eröffnet neue Entwicklungsmöglichkeiten für Medikamente- und Materialdesign.

An der Jacobs University wurde nun ein biomimetisches System entwickelt, in dem kleine Halogenmoleküle aus zwei Jod- bzw. Bromatomen sogenannte perpendikulare – also senkrechte – Halogenbrückenbindungen zu den Harnstoffgruppen eines hohlen Makromoleküls aus der Klasse der Cucurbiturile ausbildeten und so in dem Hohlraum des synthetischen, fassförmigen Containermoleküls gebunden wurden. Diese Art von schwacher chemischer Interaktion ist eine spezielle Form von Halogenbrücken, wie sie bislang nur aus der Biologie für halogenhaltige Proteinkomplexe bekannt waren. Das Forscherteam der Jacobs University konnte seine experimentellen Befunde durch Kristallstrukturen und mittels quantenchemischer Berechnungen verifizieren und damit erstmals diese „biologische“ Variante von Halogenbindungen für ein artifizielles Molekülsystem nachweisen.

„Durch die Übertragung der Halogenbrücken von Proteinen auf synthetische Moleküle ist es uns gelungen, die Triebkraft zur Ausbildung dieser ungewöhnlichen Bindungen nun wirklich im Detail zu verstehen und auch zu verallgemeinern. So ist es beispielsweise entscheidend, dass sowohl Proteine als auch Cucurbiturile Amidgruppen enthalten, und dass die Wechselwirkung in der Gegenwart von Wasser erfolgt“, sagt Werner Nau, Professor of Chemistry und Leiter der Studie. Mit seinem Team forscht er schwerpunktmäßig im Bereich der supramolekularen Chemie, die sich mit der Assoziation von Molekülen zu übergeordneten Strukturen befasst und den für diese Prozesse wichtigen schwachen Wechselwirkungen. Unterstützt wurde er von Ulrich Kortz, ebenfalls Chemieprofessor an der Bremer Privatuniversität, der mit seinem Team seine langjährige Expertise zur Strukturaufklärung komplexer molekularer Strukturen zu dem Kooperationsprojekt beisteuerte.

„Die beobachteten biomimetischen Wechselwirkungen erlauben aber nicht nur ein besseres Verständnis der Bindungen in biologischen Systemen, zum Beispiel für die Erkennung des Schilddrüsenhormons Thyroxin, sondern auch deren Nutzung für die Entwicklung neuer Materialien oder Pharmaka“, so Nau weiter. „Unsere Forschungsergebnisse liefern hier insofern neue Design-Kriterien, als bislang die von uns untersuchten schwachen Bindungskräfte bei der computergestützten Wirkstoffoptimierung vernachlässigt wurden“, so der Bremer Chemiker. „Das an das Cucurbituril komplexierte Jod erfährt zudem durch die biomimetischen Halogenbrücken eine besondere Stabilisierung, die für Anwendungen von großem Interesse ist. Das gebundene Jod ist in wässriger Lösung länger stabil, eine Eigenschaft, die wir zurzeit zur Entwicklung länger wirksamer jodhaltiger Antiseptika nutzen. Zudem untersuchen wir, ob durch Zugabe von Cucurbituril jodhaltige Herzschrittmacher-Batterien und organische Solarzellen in ihrer Leistung verbessert werden können, in denen Jod als Elektrodenmaterial dient“, so Jacobs-Professor Nau abschließend.

Fragen zu der Studie beantwortet:
Werner Nau | Professor of Chemistry
Tel.: +49 421 200-3233 | Email: w.nau@jacobs-university.de
Weitere Infos unter: http://www.jacobs-university.de/ses/wnau

Dr. Kristin Beck | Jacobs University Bremen
Weitere Informationen:
http://pubs.acs.org/doi/abs/10.1021/ja3102902
http://www.jacobs-university.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive