Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionenkanal macht Nacktmull unempfindlich gegen Schmerz

15.12.2011
Forscher des Max-Delbrück-Centrums (MDC) Berlin haben den Grund dafür gefunden, weshalb der afrikanische Nacktmull, eines der ungewöhnlichsten Säugetiere der Erde, keinen Schmerz empfindet, wenn er mit Säure in Berührung kommt.

Nacktmulle leben dichtgedrängt in engen Höhlen, wo der Kohlendioxidgehalt (CO2) der Luft sehr hoch ist. CO2 wird im Körper zu Säure, die dauerhaft Schmerzsensoren aktiviert. Nacktmulle haben aber einen veränderten Ionenkanal in ihren Schmerzrezeptoren, den die Säure abschaltet und sie immun gegen diesen Schmerz macht. Die Tiere haben sich, so Dr. Ewan St. John Smith und Prof. Gary Lewin, im Laufe der Evolution an ihre extremen Lebensbedingungen angepasst (Science)*.

Bei der Weiterleitung schmerzhafter Reize an das Gehirn spielt der Ionenkanal Nav1.7 eine Schlüsselrolle. Er löst in den Schmerzfühlern, sensorischen Nervenzellen, deren Endigungen in der Haut liegen, einen Nervenimpuls (Aktionspotential) aus, der an das Gehirn weitergeleitet wird und „Schmerz“ signalisiert. Substanzen, die diesen Kanal blockieren, werden daher zum Beispiel zur lokalen Betäubung beim Zahnarzt eingesetzt. Menschen, bei denen dieser Ionenkanal auf Grund genetischer Mutationen beschädigt ist, fühlen keinen Schmerz. Für sie ist Schmerzunempfindlichkeit jedoch keineswegs von Vorteil, da kleine Verletzungen oder Entzündungen unbemerkt bleiben, was in der Regel zu fatalen Folgeschäden führt.

Anders beim afrikanischen Nacktmull (Heterocephalus glaber). Für diese Tiere ist Schmerzunempfindlichkeit gegen Säure offenbar ein Überlebensvorteil. Sie leben in einer so stark mit CO2 angereicherten Atmosphäre, dass ein Mensch oder auch andere Säugetiere in dieser Luft kaum überleben könnten. Hohe CO2-Konzentrationen und Säure verursachen normalerweise bei allen Säugetieren und damit auch beim Menschen sehr schmerzhafte Verätzungen und lösen Entzündungen aus. So ist das Gewebe von Patienten mit entzündlichen Gelenkerkrankungen wie zum Beispiel Rheuma, stark mit Säure angereichert. Der Säuregehalt des Gewebes aktiviert die Schmerzfühler.

Auch Nacktmulle haben Schmerzfühler. Die Forschungsgruppe von Prof. Lewin hatte bereits zeigen können, dass Nacktmulle genauso empfindlich wie Mäuse auf Hitze und Druck reagieren. Hingegen empfinden Nacktmulle bei Kontakt mit Säure keinen Schmerz. Wie Dr. St. John Smith und Prof. Lewin in der amerikanischen Fachzeitschrift Science weiter berichten, haben auch Nacktmulle den Ionenkanal Nav1.7, wie andere Säugetiere, darunter Mäuse und der Mensch. Die Forscher untersuchten deshalb die Funktion dieses Ionenkanals bei den Nacktmullen und bei den Mäusen, um zu sehen, ob es bei der Funktion und dem Aufbau dieses Ionenkanals einen Unterschied zwischen den beiden Tierarten gibt. Sie verglichen ihre Daten auch mit dem entsprechenden Ionenkanal beim Menschen.

Jetzt konnten sie zeigen, dass der Ionenkanal NaV1.7 der Nacktmulle sich von dem der Maus und des Menschen in seinem Aufbau unterscheidet. Ionenkanäle sind Proteine, die aus Aminosäuren aufgebaut sind und deren Bauanleitung in den Genen liegt. Bei dem speziellen Ionenkanal des Nacktmulls sind drei Aminosäurebausteine verändert. Diese drei veränderten Proteinbausteine führen dazu, dass der Ionenkanal des Nacktmulls sehr stark beieinträchtigt ist, bzw. von der Säure blockiert wird. Dieses Phänomen ist auch bei dem Ionenkanal Nav1.7 von Mäusen und Menschen zu beobachten. Es ist aber so schwach, dass die Weiterleitung von Schmerzsignalen kaum gestört ist.

Beim Nacktmull hingegen reicht dieser veränderte Ionenkanal aus, um die Reizweiterleitung zu unterbinden. Die Forscher erklären sich die Genveränderung in dem Ionenkanal damit, dass sich die Nacktmulle im Laufe der Evolution an die hohen CO2-Konzentrationen in der Luft angepaßt haben und damit unempfindlich gegen den durch Säure ausgelösten Schmerz geworden sind. Das ist auch dann der Fall, wenn sich in den Nervenzellen der Nacktmulle andere Ionenkanäle durch den Säurereize anschalten, die normalerweise Schmerzrezeptoren aktivieren würden.

Mausohrfledermäuse und Flughunde
Bei einer Reihe von Säugetieren ist das Gen für den Ionenkanal Nav1.7 in seinem Aufbau entschlüsselt worden. Darunter ist auch, so die MDC-Forscher, eine Fledermausart, die Mausohrfledermaus (Myotis lucifigus), die unter ähnlichen Bedingungen lebt wie die Nacktmulle und eine ähnliche Genvariante aufweist. Anders hingegen ist es bei den auf Bäumen im Freien lebenden Flughunden (Pteropus vampyrus), die wie die Nacktmulle und die Mausohrfledermaus auch in großen Kolonien leben, aber keinen CO2-Druck haben. Das lässt nach Ansicht der Forscher darauf schließen, dass sich bei ähnlichen Umweltbedingungen im Laufe der Evolution bei nicht verwandten Arten ähnliche Merkmale entwickeln. Für die Nacktmulle und die Mausohrfledermäuse heißt das, ihnen können CO2 und Säure nichts mehr anhaben.
Bedeutung für Patienten mit entzündlichen Erkrankungen?
Was bedeuten die Forschungsergebnisse der MDC-Forscher für Patienten mit entzündlichen Erkrankungen, bei denen dieser Ionenkanal ständig aktiviert ist? Nach Angaben von Prof. Lewin ist die Pharmaindustrie bereits dabei, kleine Moleküle zu entwickeln, die diesen Ionenkanal blockieren sollen. Die Erkenntnisse des Labors von Prof. Lewin könnte helfen, kleine Moleküle zu entwickeln, die ganz gezielt die veränderte Stelle des Ionenkanals blockieren.
*The molecular basis of acid insensitivity in the African naked mole-rat
Ewan St. John Smith. Damir Omerbašiæ, Stefan G. Lechner, Gireesh Anirudhan, Liudmila Lapatsina, and Gary R. Lewin
Dept. of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany

Science, Vol. 334, Dec. 16, 2011, 1557-1560

Hintergrund
Der afrikanische Nacktmull
Der afrikanische Nacktmull (Heterocephalus glaber) ist kaum größer wie eine Maus, kaum behaart und hat eine faltige, rosabraune Haut. Er lebt in den Trockengebieten von Äthiopien, Kenia und Somalia in unterirdischen engen, dunkeln Höhlen, dicht gedrängt in Kolonien mit bis zu 300 Tieren. Er hat große Zähne, mit denen er seine Höhlen gräbt, in denen der Sauerstoffgehalt der Luft so gering und der Kohlendioxidgehalt so hoch ist, dass ein Mensch in dieser Luft kaum überleben könnte. Er trinkt nichts und ernährt sich nur von Knollen. Sein Staat ist ähnlich organisiert wie bei den Bienen. Er ist auch das einzig bekannte wechselwarme Säugetier, das heißt, er passt seine Körpertemperatur der Umgebung an. Wird ihm zu kalt, verkriecht er sich in wärmere Ecken seiner Höhle, ähnlich wie Eidechsen, die zum Aufwärmen in die Sonne gehen. Darüber hinaus wird er im Vergleich zu Mäusen geradezu steinalt. Während Mäuse eine natürliche Lebenserwartung von etwa zwei Jahren haben, kann er bis zu 30 Jahre alt werden. Für die Forschung ist der Nacktmull von besonderem Interesse, weil er im Gegensatz zu anderen Säuge- und Wirbeltieren keinen Schmerz empfindet, wenn er mit Säure in Berührung kommt, die normalerweise schmerzhafte Verätzungen und Entzündungen verursacht und auch nicht an Krebs erkrankt.
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics