Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Insulin-Wirkung im Gehirn kann zu Fettleibigkeit führen

06.06.2011
Forscher entschlüsseln einen wichtigen Mechanismus, mit dem Insulin im Hypothalamus die Energiebilanz steuert

Fettreiches Essen macht dick. Hinter diesem einfachen Zusammenhang verbergen sich komplexe Signalwege, über die Botenstoffe im Gehirn den Energiehaushalt steuern. Wissenschaftler des Max-Planck-Instituts für neurologische Forschung in Köln und des Exzellenzclusters CECAD der Universität zu Köln haben nun einen wichtigen Schritt in diesem komplexen Regelkreis aufgeklärt. Sie konnten zeigen, wie das Hormon Insulin im so genannten ventromedialen Hypothalamus des Gehirns wirkt. Insulin wird infolge von fettreicher Ernährung vermehrt ausgeschüttet. In speziellen Nervenzellen – den SF-1-Neuronen – setzt es eine Signalkaskade in Gang, in deren Zentrum das Enzym PI3-Kinase steht. Über mehrere Zwischenschritte hemmt Insulin so die Weiterleitung von Nervenimpulsen, dass das Sättigungsgefühl unterdrückt und der Energieverbrauch gesenkt wird. Das fördert Übergewicht und Fettleibigkeit.


Visualisierung der Insulin-Wirkung in SF-1 Neuronen des Hypothalamus. Nach der Stimulation mit Insulin bilden die SF-1-Zellen (rot) das Signalmolekül PiP3 (grün). (Blau: Zellkern) © MPI f. neurologische Forschung

Der Hypothalamus spielt bei der Regulierung des Energiehaushalts eine wichtige Rolle. Spezielle Nervenzellen in diesem Areal, die so genannten POMC-Zellen, reagieren auf Botenstoffe und steuern somit Essverhalten und Energieverbrauch. Ein wichtiger Botenstoff ist das Hormon Insulin. Insulin bewirkt im Körper dass der über die Nahrung aufgenommene Zucker in die Zielzellen (z.B. die Muskeln) transportiert wird und diesen so als Energiequelle zur Verfügung steht. Bei fettreicher Ernährung wird es verstärkt in der Bauchspeicheldrüse gebildet, so dass seine Konzentration auch im Gehirn zunimmt. Das Zusammenspiel zwischen Insulin und den Zielzellen im Gehirn ist ebenfalls von entscheidender Bedeutung für die Kontrolle und Steuerung des Energiehaushaltes. Welche molekularen Mechanismen der Steuerung durch Insulin zugrunde liegen, ist bisher jedoch noch weitgehend unbekannt.

Eine Forschergruppe um Jens Brüning, Direktor am Max-Planck-Institut für neurologische Forschung und Leiter des Exzellenzclusters CECAD („Cellular Stress Responses in Aging-Associated Diseases“) an der Universität zu Köln hat nun einen wichtigen Schritt in diesem komplizierten Regelwerk aufgeklärt. Wie die Wissenschaftler gezeigt haben, setzt Insulin in den SF-1-Neuronen – einer weiteren Gruppe von Nervenzellen im Hypothalamus – eine Signalkaskade in Gang. Interessanterweise scheinen diese Zellen jedoch nur bei fettreicher Ernährung und Übergewicht durch Insulin reguliert zu werden. In dieser Kaskade von Botenstoffen spielt das Enzym PI3-Kinase eine zentrale Rolle. Über Zwischenschritte aktiviert das Enzym Ionenkanäle und hemmt so die Weiterleitung von Nervenimpulsen. Die Forscher vermuten, dass die SF-1-Zellen auf diese Weise mit den POMC-Zellen kommunizieren.

Kinasen sind Enzyme, die andere Moleküle über Phosphorylierung – das Anhängen von Phosphatgruppen – aktivieren. „Bindet Insulin an seinen Rezeptor auf der Oberfläche der SF-1-Zellen, bewirkt es die Aktivierung der PI3-Kinase“, erklärt Tim Klöckener, Erstautor der Studie. „Die PI3-Kinase wiederum steuert über Phosphorylierung die Bildung von PIP3, einem weiteren Signalmolekül. PIP3 macht die entsprechenden Kanäle in der Zellwand durchlässig für Kalium-Ionen.“ Deren Einstrom bewirkt, dass die Nervenzelle langsamer „feuert“ – die Weiterleitung von elektrischen Impulsen wird unterdrückt.

„Über die Zwischenstation der SF-1-Neurone hemmt Insulin bei Übergewicht somit wahrscheinlich indirekt die POMC-Neurone, die für das Sättigungsgefühl verantwortlich sind“, vermutet der Wissenschaftler. „Gleichzeitig steigt dann die Nahrungsaufnahme weiter.“ Der direkte Nachweis, dass die beiden Typen von Nervenzellen auf diese Weise direkt miteinander kommunizieren, steht aber noch aus.

Um herauszufinden, wie Insulin im Gehirn wirkt, verglichen die Kölner Wissenschaftler Mäuse, bei denen der Insulin-Rezeptor auf den SF-1-Neuronen fehlt, mit Mäusen, deren Insulin-Rezeptor intakt war. Bei normaler Ernährung fanden die Forscher keinen Unterschied zwischen den beiden Gruppen. Dies deutet darauf hin, dass Insulin bei schlanken Individuen keinen entscheidenden Einfluss auf die Aktivität dieser Zellen hat. Bekamen die Nager hingegen fettreiche Kost zu fressen, blieben diejenigen mit defektem Insulin-Rezeptor schlank, während ihre Artgenossen mit funktionsfähigem Rezeptor rapide an Gewicht zulegten. Verantwortlich für die Gewichtszunahme waren sowohl ein gesteigerter Appetit als auch ein verringerter Kalorienverbrauch. Diese Wirkung von Insulin könnte eine evolutionäre Anpassung des Körpers an unregelmäßiges Nahrungsangebot mit langen Hungerperioden darstellen: Steht kurzzeitig ein Überangebot an besonders fettreicher Nahrung zur Verfügung, kann der Körper durch die Insulinwirkung besonders effektiv Energiereserven anlegen.

Ob die Ergebnisse der Studie möglicherweise helfen, um eines Tages gezielt in den Energiehaushalt einzugreifen, lässt sich derzeit noch nicht abschätzen. „Von einer praktischen Anwendung sind wir momentan noch weit entfernt“, sagt Jens Brüning. „Unser Ziel ist es herauszufinden, wie Hunger und Sättigungsgefühl entstehen. Erst wenn wir das gesamte System verstehen, können wir anfangen, Therapien zu entwickeln.“

Ansprechpartner
Prof. Jens Brüning
Max-Planck-Institut für neurologische Forschung, Cologne
E-Mail: bruening@nf.mpg.de
Ansprechpartner
Tim Klöckener
Universität zu Köln
Telefon: +49 221 470-1580
E-Mail: Tim.Kloeckener@uni-koeln.de
Originalveröffentlichung
Tim Klöckener, Simon Hess, Bengt F. Belgardt, Lars Paeger, Linda A.W. Verhagen, Andreas Husch, Jong-Woo Sohn, Brigitte Hampel, Harveen Dhillon, Jeffrey M. Zigman, Bradford B. Lowell, Kevin W. Williams, Joel K. Elmquist, Tamas L. Horvath, Peter Kloppenburg, Jens C. Brüning
High-fat Feeding Promotes Obesity via Insulin Receptor/P13k-Dependent Inhibition of SF-1 VMH Neurons

Nature Neuroscience, 5. Juni 2011

Prof. Jens Brüning | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4332755/insulin_fettleibigkeit

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik