Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Insulin-Wirkung im Gehirn kann zu Fettleibigkeit führen

06.06.2011
Forscher entschlüsseln einen wichtigen Mechanismus, mit dem Insulin im Hypothalamus die Energiebilanz steuert

Fettreiches Essen macht dick. Hinter diesem einfachen Zusammenhang verbergen sich komplexe Signalwege, über die Botenstoffe im Gehirn den Energiehaushalt steuern. Wissenschaftler des Max-Planck-Instituts für neurologische Forschung in Köln und des Exzellenzclusters CECAD der Universität zu Köln haben nun einen wichtigen Schritt in diesem komplexen Regelkreis aufgeklärt. Sie konnten zeigen, wie das Hormon Insulin im so genannten ventromedialen Hypothalamus des Gehirns wirkt. Insulin wird infolge von fettreicher Ernährung vermehrt ausgeschüttet. In speziellen Nervenzellen – den SF-1-Neuronen – setzt es eine Signalkaskade in Gang, in deren Zentrum das Enzym PI3-Kinase steht. Über mehrere Zwischenschritte hemmt Insulin so die Weiterleitung von Nervenimpulsen, dass das Sättigungsgefühl unterdrückt und der Energieverbrauch gesenkt wird. Das fördert Übergewicht und Fettleibigkeit.


Visualisierung der Insulin-Wirkung in SF-1 Neuronen des Hypothalamus. Nach der Stimulation mit Insulin bilden die SF-1-Zellen (rot) das Signalmolekül PiP3 (grün). (Blau: Zellkern) © MPI f. neurologische Forschung

Der Hypothalamus spielt bei der Regulierung des Energiehaushalts eine wichtige Rolle. Spezielle Nervenzellen in diesem Areal, die so genannten POMC-Zellen, reagieren auf Botenstoffe und steuern somit Essverhalten und Energieverbrauch. Ein wichtiger Botenstoff ist das Hormon Insulin. Insulin bewirkt im Körper dass der über die Nahrung aufgenommene Zucker in die Zielzellen (z.B. die Muskeln) transportiert wird und diesen so als Energiequelle zur Verfügung steht. Bei fettreicher Ernährung wird es verstärkt in der Bauchspeicheldrüse gebildet, so dass seine Konzentration auch im Gehirn zunimmt. Das Zusammenspiel zwischen Insulin und den Zielzellen im Gehirn ist ebenfalls von entscheidender Bedeutung für die Kontrolle und Steuerung des Energiehaushaltes. Welche molekularen Mechanismen der Steuerung durch Insulin zugrunde liegen, ist bisher jedoch noch weitgehend unbekannt.

Eine Forschergruppe um Jens Brüning, Direktor am Max-Planck-Institut für neurologische Forschung und Leiter des Exzellenzclusters CECAD („Cellular Stress Responses in Aging-Associated Diseases“) an der Universität zu Köln hat nun einen wichtigen Schritt in diesem komplizierten Regelwerk aufgeklärt. Wie die Wissenschaftler gezeigt haben, setzt Insulin in den SF-1-Neuronen – einer weiteren Gruppe von Nervenzellen im Hypothalamus – eine Signalkaskade in Gang. Interessanterweise scheinen diese Zellen jedoch nur bei fettreicher Ernährung und Übergewicht durch Insulin reguliert zu werden. In dieser Kaskade von Botenstoffen spielt das Enzym PI3-Kinase eine zentrale Rolle. Über Zwischenschritte aktiviert das Enzym Ionenkanäle und hemmt so die Weiterleitung von Nervenimpulsen. Die Forscher vermuten, dass die SF-1-Zellen auf diese Weise mit den POMC-Zellen kommunizieren.

Kinasen sind Enzyme, die andere Moleküle über Phosphorylierung – das Anhängen von Phosphatgruppen – aktivieren. „Bindet Insulin an seinen Rezeptor auf der Oberfläche der SF-1-Zellen, bewirkt es die Aktivierung der PI3-Kinase“, erklärt Tim Klöckener, Erstautor der Studie. „Die PI3-Kinase wiederum steuert über Phosphorylierung die Bildung von PIP3, einem weiteren Signalmolekül. PIP3 macht die entsprechenden Kanäle in der Zellwand durchlässig für Kalium-Ionen.“ Deren Einstrom bewirkt, dass die Nervenzelle langsamer „feuert“ – die Weiterleitung von elektrischen Impulsen wird unterdrückt.

„Über die Zwischenstation der SF-1-Neurone hemmt Insulin bei Übergewicht somit wahrscheinlich indirekt die POMC-Neurone, die für das Sättigungsgefühl verantwortlich sind“, vermutet der Wissenschaftler. „Gleichzeitig steigt dann die Nahrungsaufnahme weiter.“ Der direkte Nachweis, dass die beiden Typen von Nervenzellen auf diese Weise direkt miteinander kommunizieren, steht aber noch aus.

Um herauszufinden, wie Insulin im Gehirn wirkt, verglichen die Kölner Wissenschaftler Mäuse, bei denen der Insulin-Rezeptor auf den SF-1-Neuronen fehlt, mit Mäusen, deren Insulin-Rezeptor intakt war. Bei normaler Ernährung fanden die Forscher keinen Unterschied zwischen den beiden Gruppen. Dies deutet darauf hin, dass Insulin bei schlanken Individuen keinen entscheidenden Einfluss auf die Aktivität dieser Zellen hat. Bekamen die Nager hingegen fettreiche Kost zu fressen, blieben diejenigen mit defektem Insulin-Rezeptor schlank, während ihre Artgenossen mit funktionsfähigem Rezeptor rapide an Gewicht zulegten. Verantwortlich für die Gewichtszunahme waren sowohl ein gesteigerter Appetit als auch ein verringerter Kalorienverbrauch. Diese Wirkung von Insulin könnte eine evolutionäre Anpassung des Körpers an unregelmäßiges Nahrungsangebot mit langen Hungerperioden darstellen: Steht kurzzeitig ein Überangebot an besonders fettreicher Nahrung zur Verfügung, kann der Körper durch die Insulinwirkung besonders effektiv Energiereserven anlegen.

Ob die Ergebnisse der Studie möglicherweise helfen, um eines Tages gezielt in den Energiehaushalt einzugreifen, lässt sich derzeit noch nicht abschätzen. „Von einer praktischen Anwendung sind wir momentan noch weit entfernt“, sagt Jens Brüning. „Unser Ziel ist es herauszufinden, wie Hunger und Sättigungsgefühl entstehen. Erst wenn wir das gesamte System verstehen, können wir anfangen, Therapien zu entwickeln.“

Ansprechpartner
Prof. Jens Brüning
Max-Planck-Institut für neurologische Forschung, Cologne
E-Mail: bruening@nf.mpg.de
Ansprechpartner
Tim Klöckener
Universität zu Köln
Telefon: +49 221 470-1580
E-Mail: Tim.Kloeckener@uni-koeln.de
Originalveröffentlichung
Tim Klöckener, Simon Hess, Bengt F. Belgardt, Lars Paeger, Linda A.W. Verhagen, Andreas Husch, Jong-Woo Sohn, Brigitte Hampel, Harveen Dhillon, Jeffrey M. Zigman, Bradford B. Lowell, Kevin W. Williams, Joel K. Elmquist, Tamas L. Horvath, Peter Kloppenburg, Jens C. Brüning
High-fat Feeding Promotes Obesity via Insulin Receptor/P13k-Dependent Inhibition of SF-1 VMH Neurons

Nature Neuroscience, 5. Juni 2011

Prof. Jens Brüning | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4332755/insulin_fettleibigkeit

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie