Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innsbrucker Neurologen finden Biomarker für häufige Komplikation nach Hirnblutung

21.09.2010
Früherkennung und Therapieanpassung mindern Risiko und Folgeschäden

Neue Erkenntnisse aus einer an der Univ.-Klinik für Neurologie (Direktor Univ.-Prof. Werner Poewe) durchgeführten Studie an PatientInnen mit spontaner Subarachnoidalblutung (SAB) - einer speziellen Form des Schlaganfalls - beschreiben zelluläre Mikropartikel im Blutplasma als möglichen Indikator für das Auftreten eines zerebralen Vasospasmus. Diese krampfartige Verengung von Gehirnarterien tritt bei bis zu 70 Prozent der PatientInnen auf und hat häufig die Entstehung von Schlaganfällen und somit schwere Gehirnschäden zur Folge.

Im Verlauf einer spontanen Subarachnoidalblutung (SAB), in der Blut an die Gehirnoberfläche dringt und so zu einem lebensbedrohlichen Zustand für die Betroffenen führt, stellen zerebrale Vasospasmen eine zusätzlich häufige und schwerwiegende Komplikation dar. In der Folge kann es zu einer Minderversorgung des Gehirns mit Blut und somit zu einem sekundären Hirninfarkt kommen. Vor dem Hintergund dieser schwer zu behandelnden Komplikation und des allgemein schlechten Outcomes von SAB-PatientInnen kommt der Früherkennung eines Vasospasmus daher besondere Bedeutung zu.

Früherkennung verbessert Perspektive

Auf der Suche nach neuen Biomarkern für das Auftreten eines Vasospasmus untersuchte ein Forschungsteam um Dr. Peter Lackner von der Arbeitsgruppe Neurologische Intensivmedizin (Leitung Univ.-Prof. Erich Schmutzhard) im Zeitraum von zwei Jahren PatientInnen mit Subarachnoidalblutung. „Dabei konnten wir zeigen, dass der Anteil endothelialer Mikropartikel (das Endothel sind die Zellen der innersten Wandschicht von Lymph- und Blutgefäßen) bei PatientInnen mit SAB und insbesondere bei PatientInnen mit Vasospasmus im Plasma erhöht ist“, erklärt Studienautor Lackner.

Endotheliale Mikropartikel sind erst seit kurzem bekannte Membranabschnürungen von Endothelzellen, die bei Aktivierung der Endothelzelle entstehen. „Neben der möglichen Entwicklung neuer Biomarker zur Früherkennung des Vasospasmus deuten unsere Ergebnisse daraufhin, dass die endotheliale Aktivierung eine relevante Rolle bei der Entstehung eines Vasospasmus spielt“, so Lackner, dessen Forschungsarbeit kürzlich in der renommierten Fachzeitschrift "Stroke" publiziert wurde.

Weiters konnten die Forscher zeigen, dass bei PatientInnen, welche einen Vasospasmus assoziierten Infarkt erlitten hatten, zusätzlich der Anteil thrombozytärer Mikropartikel (Thrombozyten sind Blutplättchen; ein überhöhter Thrombozytenanteil erhöht das Infarktrisiko) erhöht war. Diese Beobachtung könnte darauf hinweisen, dass Mikrothrombosen die Entstehung von Vasospasmus assoziierten Infarkten beeinflussen.

Nun soll durch weitere klinische Studien gezeigt und bestätigt werden, inwieweit sich der Anteil der endothelialen Mikropartikel im Plasma als Biomarker etablieren läßt. „Bei frühzeitiger Erkennung kann eine individuelle, neurointensivmedizinische Therapie das Risiko für Infarkte reduzieren. Darüber hinaus könnten sich aus unseren Ergebnissen neue Therapiekonzepte ableiten lassen, etwa die medikamentöse Beeinflussung von Mikrothrombosen“, unterstreicht Dr. Lackner die Bedeutung der neuen Erkenntnisse.

Links:

§ Forschungsarbeit: Cellular Microparticles as a Marker for Cerebral Vasospasm in Spontaneous Subarachnoid Hemorrhage. Peter Lackner, MD; Anelia Dietmann, MD; Ronny Beer, MD; Marlene Fischer, MD; Stroke published online Sep 2, 2010;

http://dx.doi.org/ 10.1161/STROKEAHA.110.584995

§ Univ.-Klinik für Neurologie
http://www.i-med.ac.at/neurologie/
§ Arbeitsgruppe Intensivneurologie
http://www.i-med.ac.at/neurologie/forschung/intensivneurologie.html
Details zur Medizinischen Universität Innsbruck
Die Medizinische Universität Innsbruck mit ihren rund 1.700 MitarbeiterInnen und ca. 3.000 Studierenden ist gemeinsam mit der Universität Innsbruck die größte Bildungs- und Forschungseinrichtung in Westösterreich und versteht sich als Landesuniversität für Tirol, Vorarlberg, Südtirol und Liechtenstein. An der Medizinischen Universität Innsbruck werden drei Studienrichtungen angeboten: Humanmedizin und Zahnmedizin als Grundlage einer akademischen medizinischen Ausbildung und das PhD-Studium (Doktorat) als postgraduale Vertiefung des wissenschaftlichen Arbeitens.

Die Medizinische Universität Innsbruck ist in zahlreiche internationale Bildungs- und Forschungsprogramme sowie Netzwerke eingebunden. In der Forschung liegen die Schwerpunkte im Bereich der Molekularen Biowissenschaften (u.a. bei dem Spezialforschungsbereich „Zellproliferation und Zelltod in Tumoren“, Proteomik-Plattform), der Neurowissenschaften, der Krebsforschung sowie der molekularen und funktionellen Bildgebung. Darüber hinaus ist die wissenschaftliche Forschung an der Medizinischen Universität Innsbruck in der hochkompetitiven Forschungsförderung sowohl national auch international sehr erfolgreich.

Für Rückfragen
Dr. Peter Lackner
Univ.-Klinik für Neurologie
Medizinische Universität Innsbruck
Anichstraße 35, 6020 Innsbruck, Austria
Tel.: + 43 512 504-81011
E-Mail: Peter.Lackner@i-med.ac.at
Kontakt
Mag. Amelie Döbele
Leiterin Öffentlichkeitsarbeit
Medizinische Universität Innsbruck
Innrain 52, 6020 Innsbruck, Austria
Telefon: +43 512 9003 70080
Mobil: +43 676 8716 72080
public-relations@i-med.ac.at

Amelie Döbele | Medizinische Universität Innsbru
Weitere Informationen:
http://www.i-med.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops